城市间货物运输Ⅲ-卡玛(Bellman_ford之单源有限最短路)

题目链接: 城市间货物运输Ⅲ
学习了代码随想录 Bellman_ford之单源有限最短路 题目要求最多经过 k 个城市的条件下,而不是一定经过k个城市,也可以经过的城市数量比k小,但要最短的路径。对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。那么经过 k 个城市,则共计 k + 1条边,那么最多需要松弛 k + 1次。

每次对每条边松弛时,要使用上次的minDist数组来计算minDist。原因:

  • 本题可以有负权回路,说明只要多做松弛,结果是会变的。
  • 本题要求最多经过k个节点,对松弛次数是有限制的

如果本题没有 负权回路,则不使用上次的 minDist数组 同样可以实现

  • 边的顺序会影响我们每一次拓展的结果
#include <bits/stdc++.h>
using namespace std;

int main(){
    int n,m,s,t,k;
    cin >> n >> m;
    vector<vector<int>> edges;
    while(m--){
        cin >> s >> t >> k;
        edges.push_back({s, t, k});
    }
    cin >> s >> t >> k;
    vector<int> minDist(n + 1, INT_MAX);
    minDist[s] = 0;
    vector<int> minDistLast(n + 1);
    for(int i = 1; i <= k + 1; i++){
        minDistLast = minDist;
        for(auto& edge : edges){
            if(minDistLast[edge[0]] != INT_MAX && minDist[edge[1]] > minDistLast[edge[0]] + edge[2]){
                minDist[edge[1]] = minDistLast[edge[0]] + edge[2];
            }
        }
    }
    if(minDist[t] == INT_MAX){
        cout << "unreachable" << endl;
    }else{
        cout << minDist[t] << endl;
    }
    return 0;
}

使用队列优化后的 Bellman_ford 算法,关键在于 如何控制松弛 k 次,可以用一个变量 que_size 记录每一轮松弛入队列的所有节点数量。
下一轮松弛的时候,就把队列里 que_size 个节点都弹出来,就是上一轮松弛入队列的节点。

#include <bits/stdc++.h>
using namespace std;

int main(){
    int n,m,s,t,k;
    cin >> n >> m;
    vector<list<pair<int, int>>> grid(n + 1);
    while(m--){
        cin >> s >> t >> k;
        grid[s].push_back(make_pair(t, k));
    }
    cin >> s >> t >> k;
    vector<int> minDist(n + 1, INT_MAX);
    minDist[s] = 0;
    k++;
    
    queue<int> que;
    que.push(s);
    
    vector<int> minDistLast(n + 1);
    
    while(k-- && !que.empty()){
        minDistLast = minDist;
        int nodeNum = que.size();
        
        while(nodeNum--){
            int cur = que.front();
            que.pop();
            for(auto& edge : grid[cur]){
                auto [next, val] = edge;
                if(minDist[next] > minDistLast[cur] + val){
                    minDist[next] = minDistLast[cur] + val;
                    que.push(next);
                }
            }
        }
    }
    
    if(minDist[t] == INT_MAX){
        cout << "unreachable" << endl;
    }else{
        cout << minDist[t] << endl;
    }
    return 0;
}

可以在每轮松弛中,对已经访问过的节点,不再重复加入队列

#include <bits/stdc++.h>
using namespace std;

int main(){
    int n,m,s,t,k;
    cin >> n >> m;
    vector<list<pair<int, int>>> grid(n + 1);
    while(m--){
        cin >> s >> t >> k;
        grid[s].push_back(make_pair(t, k));
    }
    cin >> s >> t >> k;
    vector<int> minDist(n + 1, INT_MAX);
    minDist[s] = 0;
    k++;
    
    queue<int> que;
    que.push(s);
    
    vector<int> minDistLast(n + 1);
    
    while(k-- && !que.empty()){
        minDistLast = minDist;
        int nodeNum = que.size();
        vector<bool> visited(n + 1, false); // 每一轮松弛中,控制节点不用重复入队列
        
        while(nodeNum--){
            int cur = que.front();
            que.pop();
            for(auto& edge : grid[cur]){
                auto [next, val] = edge;
                if(minDist[next] > minDistLast[cur] + val){
                    minDist[next] = minDistLast[cur] + val;
                    if(visited[next]) continue; // 不用重复放入队列,但需要重复松弛,所以放在这里位置
                    visited[next] = true;
                    que.push(next);
                }
            }
        }
    }
    
    if(minDist[t] == INT_MAX){
        cout << "unreachable" << endl;
    }else{
        cout << minDist[t] << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值