最大公约数的应用,位运算 921 C思路整理

这篇文章介绍了如何使用C++解决Codeforces竞赛中的一个问题,即判断一个分数能否表示为0.5的整数倍,通过求最大公约数并检查分母是否为2的幂次方实现。
摘要由CSDN通过智能技术生成

想了一小时没想到,究其原因是对公约数,分数的性质不熟悉,直接贴代码

// Problem: C. Jellyfish and Green Apple
// Contest: Codeforces - Codeforces Round 901 (Div. 2)
// URL: https://codeforces.com/problemset/problem/1875/C
// Memory Limit: 256 MB
// Time Limit: 1000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<cmath>
using namespace std;
#define endl '\n'
int _;
using ULL=unsigned long long;
#define inf 0x3f3f3f3f
#define int long long

bool find(int x){
	for(int i=1;i<=1e9;i*=2){    //查看分母是不是2的倍数,如果是,就可以被拆分
		if(i==x)  return 1;
	}
	return 0;
}

void solve(){
    int n,m;cin>>n>>m;
    if(n%m==0){
    	cout<<0<<endl;return;
    }
    int p=__gcd(n,m);//最大公约数,然后分子分母同时除以最大公约数,就是化简后的结果,这时候就可以看是不是0.5诸如此类的形式了
   if(!find(m/p)){ //找不到就找不到
    	cout<<-1<<endl;return;
    }
    double t= n*1.0 / m  -  n/m;//砍断  整数不需要被处理,只需要考虑小数部分
    int ans=0,i=1,now=1;//i是每一次加的,now是砍出这样的大小需要看几次,可以发现是2的n方-1
    double x=0.5;//起始
    while(t){
    	if(t>=x){
    	    	t-=x;
    	    	ans+=(m/(1/x)) * now;//m是人数  1/x是一个1能给几个人使用 now是砍一个用的刀数
    	}
    	    	    	
    	    	x/=2.0;//0.5 0.25 0.125
    	    	i*=2;//刀数的累加   1  3  7
    	    	now+=i;//
    }
    cout<<ans<<endl;
    
}

signed main(){
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	cin>>_;
	while(_--){
		solve();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值