LCP 30. 魔塔游戏
小扣当前位于魔塔游戏第一层,共有N
个房间,编号为0 ~ N-1
。每个房间的补血道具/怪物对于血量影响记于数组nums
,其中正数表示道具补血数值,即血量增加对应数值;负数表示怪物造成伤害值,即血量减少对应数值;0
表示房间对血量无影响。
小扣初始血量为1
,且无上限。假定小扣原计划按房间编号升序访问所有房间补血/打怪,为保证血量始终为正值,小扣需对房间访问顺序进行调整,每次仅能将一个怪物房间(负数的房间)调整至访问顺序末尾。请返回小扣最少需要调整几次,才能顺利访问所有房间。若调整顺序也无法访问完全部房间,请返回 -1。
示例 1:
输入:nums = [100,100,100,-250,-60,-140,-50,-50,100,150]
输出:1
解释:初始血量为 1。至少需要将 nums[3] 调整至访问顺序末尾以满足要求。
示例 2:
输入:nums = [-200,-300,400,0]
输出:-1
解释:调整访问顺序也无法完成全部房间的访问。
题目分析
贪心算法是一种基于贪心策略的算法设计方法,用于在求解最优化问题时作出一系列局部最优选择,从而达到全局最优的目标。贪心算法通常适用于满足最优子结构性质的问题,即问题的最优解可以通过一系列局部最优解的组合来得到
依次遍历房间的过程中
nums[i]
为正数直接加血nums[i]
为负数,将其放入一个优先队列中
当计算完第 i 个房间的生命值影响后,如果生命值小于等于 0,从优先队列中取出扣血最多的房间,补回生命值,视为跳过改房间。遍历完成后,将延迟的扣血房间累加至生命值,若为负数则无解,返回 -1
优先队列(Priority Queue)是一种特殊的队列。在优先队列中,元素被赋予优先级,当访问队列元素时,具有最高优先级的元素最先删除
class Solution {
public int magicTower(int[] nums) {
PriorityQueue<Integer> queue = new PriorityQueue<Integer>();
int ans = 0;
long hp = 1, delay = 0;
for (int num : nums) {
if (num < 0) {
queue.offer(num);
}
hp += num;
// 从优先队列中取出扣血最多的房间,补回生命值
if (hp <= 0) {
++ans;
int curr = queue.poll();
delay += curr;
hp -= curr;
}
}
// 将延迟的扣血房间累加至生命值
hp += delay;
return hp <= 0 ? -1 : ans;
}
}