自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(52)
  • 收藏
  • 关注

原创 python打卡第53天

nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法。leakyReLU介绍:避免relu的神经元失活现象。对抗生成网络的思想:关注损失从何而来。

2025-06-13 22:20:20 58

原创 python打卡第52天

大部分时候,由于光是固定超参数的情况下,训练完模型就已经很耗时了,所以正常而言,基本不会采用传统机器学习的那些超参数方法,网格、贝叶斯、optuna之类的,看到一些博主用这些写文案啥的,感觉这些人都是脑子有问题的,估计也没学过机器学习直接就学深度学习了,搞混了二者的关系。同一层的神经元相当于在做完全相同的计算,无论输入如何变化,它们的输出模式始终一致。注意下,这里是wx后才会经过激活函数,是多个权重印象的结果,不是收到单个权重决定的,所以单个权重可以取负数,但是如果求和后仍然小于0,那么输出会为0。

2025-06-12 20:21:28 1224

原创 python打卡第51天

【代码】python打卡第51天。

2025-06-11 18:15:10 106

原创 python打卡第50天

**底层 (Low-Level)** | `conv1`, `layer1`, `layer2` | 边缘、颜色、纹理、方向等**通用基础特征** | 低 (Universal) | **后期解冻或保持冻结** (保护通用知识) |* **任务相关性**:这些特征是**高度可复用**的。| **高层 (High-Level)** | `layer3`, `layer4` | 物体部件、复杂形状、**特定物体的概念** | 高 (Task-Specific) | **优先解冻** (适应新任务) |

2025-06-10 20:38:30 717

原创 python打卡第49天

CBAM 是一种能够集成到任何卷积神经网络架构中的注意力模块。它的核心目标是通过学习的方式,自动获取特征图在通道和空间维度上的重要性,进而对特征图进行自适应调整,增强重要特征,抑制不重要特征,提升模型的特征表达能力和性能。CBAM 由两个主要部分组成:通道注意力模块(Channel Attention Module)和空间注意力模块(Spatial Attention Module)。通道注意力(Channel Attention):分析 “哪些通道的特征更关键”(如图像中的颜色、纹理通道)。

2025-06-09 21:44:42 317

原创 python打卡第48天

知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致。

2025-06-08 21:44:34 729

原创 python打卡第47天

这个注意力热图是通过构子机制: `register_forward_hook` 捕获最后一个卷积层(`conv3`)的输出特征图。1. **通道权重计算**:对特征图的每个通道进行全局平均池化,得到通道重要性权重。2. **热力图生成**:将高权重通道的特征图缩放至原始图像尺寸,与原图叠加显示。- 向非技术人员解释模型决策依据(如“模型认为这是狗,因为关注了眼睛和嘴巴”)。- 通道1可能关注整体轮廓,通道2关注纹理细节,通道3关注颜色分布。- **高关注区域**(红色):模型认为对分类最重要的区域。

2025-06-07 19:58:51 224

原创 python 打卡第46天

但是卷积是 “固定权重” 的特征提取(如 3x3 卷积核)--训练完了就结束了,注意力是 “动态权重” 的特征提取(权重随输入数据变化)---输入数据不同权重不同。特征图本质就是不同的卷积核的输出,浅层指的是离输入图近的卷积层,浅层卷积层的特征图通常较大,而深层特征图会经过多次下采样,尺寸显著缩小,尺寸差异过大时,小尺寸特征图在视觉上会显得模糊或丢失细节。可以看到测试集一定程度上收敛了,在85%左右(还可以继续训练的),我们后续和加了通道注意力的该模型作对比,这也意味着我们进入到了消融实验的部分了。

2025-06-06 17:27:59 535

原创 python打卡第45天

TensorBoard 的核心原理就是在训练过程中,把训练过程中的数据(比如损失、准确率、图片等)先记录到日志文件里,再通过工具把这些日志文件可视化成图表,这样就不用自己手动打印数据或者用其他工具画图。之前的内容中,我们在神经网络训练中,为了帮助自己理解,借用了很多的组件,比如训练进度条、可视化的loss下降曲线、权重分布图,运行结束后还可以查看单张图的推理效果。训练模型时,TensorBoard 会让程序把训练数据(比如损失值、准确率)和模型结构等信息,写入一个特殊的日志文件(.tfevents 文件)

2025-06-05 18:41:07 498

原创 python打卡第44天

负责输出的预测部分的叫做Head。其中,训练过程中,为了不破坏最开始的特征提取器的参数,最开始往往先冻结住特征提取器的参数,然后训练全连接层,大约在5-10个epoch后解冻训练。那么什么模型会被选为预训练模型呢?比如一些调参后表现很好的cnn神经网络(固定的神经元个数+固定的层数等)。所以调用预训练模型做微调,本质就是 用这些固定的结构+之前训练好的参数 接着训练。所以需要找到预训练的模型结构并且加载模型参数。图像预训练模型的发展史。常见的分类预训练模型。预训练模型的训练策略。

2025-06-04 18:31:43 254

原创 python打卡第43天

kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化。进阶:并拆分成多个文件。

2025-06-02 21:57:50 70

原创 python打卡第42天

**对比维度** | **回调函数** | **装饰器** |Hook 函数是一种回调函数,它可以在不干扰模型正常计算流程的情况下,插入到模型的特定位置,以便获取或修改中间层的输出或梯度。回调函数核心是将处理逻辑(回调)作为参数传递给计算函数,控制流:计算函数 → 回调函数,适合一次性或动态的处理需求(控制流指的是程序执行时各代码块的执行顺序)

2025-06-01 16:19:29 586

原创 python打卡第41天

该策略通常不改变单次训练的样本总数,而是通过对现有图像进行多样化变换,使每次训练输入的样本呈现更丰富的形态差异,从而有效扩展模型训练的样本空间多样性。1. Batch Normalization:一般用于图像数据,因为图像数据通常是批量处理,有相对固定的 Batch Size ,能利用 Batch 内数据计算稳定的统计量(均值、方差 )来做归一化。-----深度学习可解释性。| **推理阶段** | 使用训练集的**全局统计量**(如滑动平均后的均值和方差) | 不更新参数,直接使用固定值 |

2025-05-31 22:43:02 600

原创 python打卡第40天

dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout。展平操作:除第一个维度batchsize外全部展平。彩色和灰度图片测试和训练的规范写法:封装在函数中。

2025-05-30 22:35:33 357

原创 python 打卡训练营第39天

图像数据的格式:灰度和彩色数据。

2025-05-29 21:23:05 359

原创 python打卡第38天

了解下cifar数据集,尝试获取其中一张图片。

2025-05-27 21:30:25 210

原创 python打卡第37天

对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略。保存全部信息checkpoint,还包含训练状态。过拟合的判断:测试集和训练集同步打印指标。

2025-05-26 18:13:51 184

原创 python打卡第36天

【代码】python打卡第36天。

2025-05-25 21:27:13 92

原创 python打卡第35天

一般用with语句创建对象,这样对象会在with语句结束后自动销毁,保证资源释放。with是常见的上下文管理器,这样的使用方式还有用with打开文件,结束后会自动关闭文件。2. 更新进度条,通过pbar.update(n)指定每次前进的步数n(适用于非固定步长的循环)。三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化。torchsummary库的summary方法。作业:调整模型定义时的超参数,对比下效果。torchinfo库的summary方法。推理的写法:评估模式。

2025-05-24 22:58:03 185

原创 python打卡第34天

类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)GPU训练的方法:数据和模型移动到GPU device上。CPU性能的查看:看架构代际、核心数、线程数。GPU性能的查看:看显存、看级别、看架构代际。

2025-05-23 21:11:42 322

原创 python打卡第33天

查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。定义损失函数和优化器。

2025-05-22 20:32:03 638

原创 python打卡第32天

官方文档:https://pdpbox.readthedocs.io/en/latest/GitHub 仓库:https://github.com/SauceCat/PDPbox。PyPI 页面:https://pypi.org/project/PDPbox/参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。-在官方文档中搜索函数名,然后查看函数的详细说明和用法。官方文档的阅读和使用:要求安装的包和文档为同一个版本。官方文档的检索方式:github和官网。绘图的理解:对底层库的调用。

2025-05-21 21:42:00 109

原创 python第 31天

尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。

2025-05-20 22:23:46 177

原创 python打卡第30天

知识点回顾:一,导入官方库的三种手段。使用import直接导入整个模块使用导入特定功能使用as关键字重命名模块或功能二,导入自定义库/模块的方式。

2025-05-19 22:34:18 250

原创 python打卡第29天

知识点回顾类的装饰器装饰器思想的进一步理解:外部修改、动态类方法的定义:内部定义和外部定义作业:复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等,未来再过几个专题部分我们即将开启深度学习部分。

2025-05-18 16:30:50 589

原创 python打卡 第28天

calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。shape_type="circle":创建圆(参数:半径)。calculate_area():计算面积(公式:长×宽)。

2025-05-17 12:47:59 161

原创 python打卡第27天

装饰器的思想:进一步复用。注意内部函数的返回值。

2025-05-16 21:45:10 284

原创 python打卡训练营第26天

函数的参数类型:位置参数、默认参数、不定参数。传递参数的顺序:同时出现三种参数类型时。变量作用域:局部变量和全局变量。传递参数的手段:关键词参数。

2025-05-15 18:52:53 373

原创 python打卡训练营第25天

在编程中,异常是指在程序运行过程中发生的错误或异常情况,例如除以零、索引越界、文件不存在等。当程序遇到异常时,如果没有进行处理,将导致程序中断并抛出异常信常。print(undefined_variable) # 变量未定义:当在函数内部试图访问一个未在函数内部定义的局部变量时,会引发此错误。x = 10print(x) # 这里会报错,因为x在函数内部未定义func()

2025-05-14 18:52:25 544

原创 python训练营第24天

对自己电脑的不同文件夹利用今天学到的知识操作下,理解下os路径。

2025-05-13 19:13:34 212

原创 python60天打卡训练营第23天

转换器是用于数据预处理或特征工程的工具,其核心功能是通过。ColumnTransformer和Pipeline类。估计器是机器学习模型的核心,通过。学习数据模式,并通过。方法对数据进行转换。

2025-05-12 19:34:04 196

原创 python60天打卡训练营第22天

自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码。

2025-05-11 22:47:02 109

原创 python60天打卡训练营第21天

​数据维度高:高维数据通常具有较大的存储空间需求和计算复杂度,可能导致模型复杂度增加、过拟合风险增大等问题。例如在图像和视频处理、信号处理、生物医学数据分析等领域,数据往往具有很高的维度,通过特征降维可以降低数据的维度,减少数据的存储空间需求,提高数据的存储和传输效率,同时降低模型的复杂度,提高模型的训练速度和泛化能力。​特征存在冗余或相关性:如果数据集中存在一些不重要的特征,或者某些特征之间存在高度相关性,这些特征可能会干扰模型的学习,导致模型性能下降。例如某些特征的取值较为接近,其包含的信息较少;

2025-05-10 21:47:27 906

原创 python60天打卡训练营第十九天

【代码】python60天打卡训练营第十九天。

2025-05-08 22:18:55 130

原创 python60天打卡训练营第十八天

参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。推断簇含义的2个思路:先选特征和后选特征。科研逻辑闭环:通过精度判断特征工程价值。通过可视化图形借助ai定义簇的含义。

2025-05-07 20:28:15 93

原创 python60天打卡训练营第十七天

聚类常见算法:kmeans聚类、dbscan聚类、层次聚类。

2025-05-06 20:54:04 372

原创 python60天打卡训练营第16天

numpy数组的创建:简单创建、随机创建、遍历、运算。numpy数组的索引:一维、二维、三维。SHAP值的深入理解。

2025-05-05 21:53:55 360

原创 python60天打卡训练营第15天

想尝试做股票分析,还在研究 ...先放一天。

2025-05-04 22:04:40 100

原创 python60天打卡训练营第十四天

尝试确定一下shap各个绘图函数对于每一个参数的尺寸要求,如shap.force_plot力图中的数据需要满足什么形状?确定分类问题和回归问题的数据如何才能满足尺寸,分类采取信贷数据集,回归采取单车数据集。参考上述文档补全剩余的几个图。

2025-05-03 23:00:18 128

原创 python60天打卡训练营第13天

不平衡数据集的处理策略:过采样、修改权重、修改阈值。

2025-05-02 21:02:36 129

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除