读《十月》2018-1

怀念小时候在爸妈房间看到的十月,买了几本来读。

不喜欢里面的小说。

看着那几首诗也是超级无感,比较现实的我,看着那些诗,有种无病呻吟的样子。

内容概要:本文介绍了基于Zernike矩的乳腺肿块良恶性分类方法,结合快速相反权重学习规则,在Matlab平台上实现了医学图像特征提取与分类的自动【基于Zernike矩的良性和恶性肿块的分类】应用于乳腺癌诊断中的快速相反权重学习规则(Matlab代码实现)化流程。Zernike矩用于提取乳腺肿块的形状和纹理特征,具有良好的旋转不变性,适用于医学图像分析;快速相反权重学习规则则用于优化分类过程,提高诊断准确率和效率。文中提供了完整的Matlab代码实现,便于研究人员复现和进一步优化算法。此外,文档还列举了多个相关科研方向和技术应用,展示了该方法在生物医学工程与智能诊断系统中的潜力。; 适合人群:具备一定Matlab编程基础,从事医学图像处理、模式识别、人工智能或生物医学工程领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于乳腺癌早期辅助诊断系统,提升医学影像分析的自动化水平;②作为科研教学案例,帮助理解图像特征提取(如Zernike矩)与智能分类算法的结合应用;③为优化医学图像分类模型提供可复现的技术路径与代码参考。; 阅建议:建议者结合提供的Matlab代码逐模块运行与调试,深入理解Zernike矩的特征提取机制及分类器训练过程,同时可拓展学习文档中提及的相关算法(如支持向量机、深度学习等),以构建更高效的医学图像分析系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值