tGSSA-LSTM多输入回归|改进麻雀优化-长短期记忆神经网络|Matlab回归通用

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

三、方法原理介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab平台编译,将tGSSA(自适应t分布与黄金正选改进的麻雀优化算法)LSTM(卷积神经网络)结合,进行多输入数据回归预测。(多变量回归预测,个数可自行指定)

  • 输入训练的数据包含7个特征1个响应值,即通过7个输入值预测1个输出值。(数据导入后自动归一化,提升泛化性)

  • 通过tGSSA算法优化LSTM的学习率、神经元个数参数,记录下最优的网络参数作为后续的应用网络。

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

三、方法原理介绍:

自适应t分布与黄金正弦改进的麻雀搜索算法(t-GSSA)原理

黄金正弦策略:

  • 黄金分割导航:利用0.618黄金比例动态划分搜索范围,前期广域探索,后期聚焦优质区域。

  • 正弦扫描机制:通过正弦函数的波动特性,模拟"雷达式"扫描解空间,兼顾大范围跳跃与局部精细搜索。

自适应t分布变异:

  • 智能扰动调节:早期采用重尾t分布(类似大胆跳跃)逃离局部最优,后期趋近高斯分布(精细调整)提升精度。

自主进化能力:变异强度随迭代次数自动减弱,触发概率从50%动态降至40%,平衡探索与开发。

算法核心优势:

  • 双策略协同:黄金正弦提供方向性搜索,t分布增强扰动多样性,突破传统算法"早熟"瓶颈。

  • 动态自调节:无需人工调参,通过迭代进程自主控制搜索模式(粗搜索→细优化)。

四、完整程序下载:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值