Bag of Words(BOW)模型

本文深入探讨了BOW模型在图像描述领域的应用,解释了BOW模型的基本概念及其在文本分类中的作用。重点介绍了如何使用BOW模型通过聚类算法构建码本来描述图像,以及在构建过程中涉及的预处理、特征提取和聚类等关键步骤。文章进一步阐述了BOW模型在图像检索中的优势与局限性。
摘要由CSDN通过智能技术生成

 原文来自:http://www.yuanyong.org/blog/cv/bow-mode

重复造轮子并不是完全没有意义的。

 

这几天忙里偷闲看了一些关于BOW模型的知识,虽然自己做图像检索到目前为止并没有用到过BOW模型,不过了解一下BOW并不是一件毫无意义的事情。网上关于理解BOW模型也很多,而且也很详细,再写一点关于BOW模型的理解,无异于重新造一次轮子,不过我一直坚信重复造轮子并不是完全没有意义的,重要的是你能够从中学到很多的知识,如果可能,你甚而再这个重复造轮子的过程中发现新问题,并进行改进。好了,回归正题。

 

  • BOW (bag of words) 模型简介

Bag of words模型最初被用在文本分类中,将文档表示成特征矢量它的基本思想是假定对于一个文本,忽略其词序和语法句法,仅仅将其看做是一些词汇的集合,而文本中的每个词汇都是独立的。简单说就是讲每篇文档都看成一个袋子(因为里面装的都是词汇,所以称为词袋,Bag of words即因此而来),然后看这个袋子里装的都是些什么词汇,将其分类如果文档中猪、马牛、羊、山谷、土地拖拉机这样的词汇多些,而银行、大厦、汽车、公园这样的词汇少些,我们就倾向于判断它是一篇描绘乡村的文档,而不是描述城镇的举个例子,有如下两个文档:

 

文档一:Bob likes to play basketball, Jim likes too.

文档二:Bob also likes to play football games.

 

基于这两个文本文档,构造一个词典:

Dictionary = {1:”Bob”, 2. “like”, 3. “to”, 4. “play”, 5. “basketball”, 6. “also”, 7. “football”,8. “games”, 9. “Jim”, 10. “too”}。

 

这个词典一共包含10个不同的单词,利用词典的索引号,上面两个文档每一个都可以用一个10维向量表示(用整数数字0~n(n为正整数)表示某个单词在文档中出现的次数):

1:[1, 2, 1, 1, 1, 0, 0, 0, 1, 1]

2:[1, 1, 1, 1 ,0, 1, 1, 1, 0, 0]

 

向量中每个元素表示词典中相关元素在文档中出现的次数(下文中,将用单词的直方图表示)。不过,在构造文档向量的过程中可以看到,我们并没有表达单词在原来句子中出现的次序(这是本Bag-of-words模型的缺点之一,不过瑕不掩瑜甚至在此处无关紧要)。

 

  • 为什么要用BOW模型描述图像

SIFT特征虽然也能描述一幅图像,但是每个SIFT矢量都是128维的,而且一幅图像通常都包含成百上千个SIFT矢量,在进行相似度计算时,这个计算量是非常大的,通行的做法是用聚类算法对这些矢量数据进行聚类,然后用聚类中的一个簇代表BOW中的一个视觉词,将同一幅图像的SIFT矢量映射到视觉词序列生成码本,这样每一幅图像只用一个码本矢量来描述,这样计算相似度时效率就大大提高了

 

  • 构建BOW码本步骤:

1. 假设训练集有M幅图像,对训练图象集进行预处理。包括图像增强,分割,图像统一格式,统一规格等等。2、提取SIFT特征对每一幅图像提取SIFT特征(每一幅图像提取多少个SIFT特征不定)。每一个SIFT特征用一个128维的描述子矢量表示,假设M幅图像共提取出N个SIFT特征。3. 用K-means对2中提取的N个SIFT特征进行聚类,K-Means算法是一种基于样本间相似性度量的间接聚类方法,此算法以K为参数,把N个对象分为K个簇,以使簇内具有较高的相似度,而簇间相似度较低。聚类中心有k个(在BOW模型中聚类中心我们称它们为视觉词),码本的长度也就为k,计算每一幅图像的每一个SIFT特征到这k个视觉词的距离,并将其映射到距离最近的视觉词中(即将该视觉词的对应词频+1)完成这一步后,每一幅图像就变成了一个与视觉词序列相对应的词频矢量。

 

设视觉词序列为{眼睛 鼻子 嘴}(k=3),则训练集中的图像变为:

第一幅图像:[1 0 0]

第二幅图像:[5 3 4]......

 

2. 构造码本。码本矢量归一化因为每一幅图像的SIFT特征个数不定,所以需要归一化。如上述例子,归一化后为[1 0 0],1/12*[5 3 4].测试图像也需经过预处理,提取SIFT特征,将这些特征映射到为码本矢量,码本矢量归一化,最后计算其与训练码本的距离,对应最近距离的训练图像认为与测试图像匹配

 

当然,在提取sift特征的时候,可以将图像打成很多小的patch,然后对每个patch提取SIFT特征。

 

总结一下,整个过程其实就做了三件事,首先提取对  n  幅图像分别提取SIFT特征,然后对提取的整个SIFT特征进行k-means聚类得到  k  个聚类中心作为视觉单词表,最后对每幅图像以单词表为规范对该幅图像的每一个SIFT特征点计算它与单词表中每个单词的距离,最近的+1,便可得到该幅图像的码本。实际上第三步是一个统计的过程,所以BOW中向量元素都是非负的。Yunchao Gong 2012年NIPS上有一篇用二进制编码用于图像快速检索的文章就是针对这类元素是非负的特征而设计的编码方案。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值