1.应用场景
主要用于了解和学习ab test的应用场景,目的,以及如何在项目中正确使用ab test。 应用场景: |
2.学习/操作
1.文档阅读
2.整理输出2.1 是什么A/B测试(又称为 Split Testing、Bucket Testing或Variant Testing)是一种常用的测试方法,通常用于在两个或多个版本之间比较和分析用户反馈和行为差异。通过在实验组和对照组之间进行随机分配和对比,A/B测试可以帮助企业和团队更好地了解不同版本对用户行为和体验的影响,从而确定最优版本并进行优化和改进。 在A/B测试中,实验组和对照组需要设置相同的条件,唯一的差异是实验组会在其中一个变量上进行改变,而对照组则保持不变。通过跟踪用户的点击率、转化率、访问时长、回头率、用户反馈等数据指标,可以量化和分析不同版本之间的差异和影响,帮助企业和团队更好地了解用户需求和偏好,从而制定更好的优化策略和方案。 补充
2.2 为什么需要「应用场景」A/B测试常见的应用场景包括网站页面设计、广告投放、产品功能测试等,也可以结合多元素测试、多变量测试等进一步优化和改进产品。需要注意的是,在进行A/B测试前需要进行充分的数据分析和实验设计,确保实验过程有效可靠,同时也需要充分考虑用户隐私和安全等问题,避免对用户造成不必要的困扰和影响。 2.3 什么时候出现「历史发展」A/B测试的历史可以追溯到上个世纪50年代,当时它主要应用于医学实验和农业试验等领域。随着计算机技术和互联网的发展,A/B测试逐渐应用于网站、电子商务和在线广告等领域,并得到了广泛关注和应用。 2000年代初期,A/B测试开始在在线广告领域大量应用。Google AdWords等在线广告平台开始采用A/B测试来测试不同广告文本、排版和颜色等因素的效果,并根据测试结果进行调整和优化。随着在线广告规模的不断扩大和数据采集技术的不断提升,A/B测试也得到了更广泛的应用。 2007年,亚马逊在技术博客上发表了一篇题为“理解机器学习:从数据驱动决策开始”的文章,介绍了公司在网站个性化推荐方面采用A/B测试和机器学习的实践经验。这篇文章在技术圈引起了轰动,并成为A/B测试在个性化推荐领域的重要里程碑。 随着移动应用和社交媒体等新兴领域的不断涌现,A/B测试也得到了广泛的应用。目前,A/B测试已经成为了数字营销和用户体验设计等领域的基本工具和方法,帮助企业和团队更好地了解用户需求和行为,提升产品质量和用户体验。 2.4 怎么实践 以下是一份可能的A/B测试学习目录,供参考: 1. A/B测试基础
2. A/B测试工具
3. A/B测试实践
4. A/B测试管理
5. A/B测试未来发展
后续补充 ... |
3.问题/补充
1. 网友: 最近做的项目是推荐产品,每个客户通过最小二乘计算出评分(用购买次数累计)。面临推荐模型的评价问题,rmse是不存在一个阈值的。目前只是知道A/B测试是常见的在线评测推荐模型的方法。所以来看看具体实施起来怎么去展开,有什么需要注意的等等。
2. tbd |
4.参考
参见上面文档列表 |
后续补充
...