MeowAI - 识别你的群晖图片场景并打上标签的工具

该工具通过SynologyAPI获取图片缩略图,并使用YoloV5离线模型对图片进行识别,添加猫咪标签。由于群晖硬件限制,识别速度不快,建议在个人主机上运行通过Docker的Python应用。项目已开源在GitHub,适合0基础的AI学习者。

通过 Synology API 获取图片缩略图,使用离线 yolov5 模型识别并对图片添加标签

为什么会有这种需求?

目前群晖 7.0 没有识别场景的功能,那么我需要找出猫咪的照片,所以产生了这个工具

运行在群晖上吗?

可以,但是由于群晖的硬件性能不是特别好,识别速度不算很快,所以推荐运行在自己的主机上,通过配置即可实现同样的效果

如何运行

docker 运行
python 直接运行

哪些平台支持

目前只支持群晖的识别, 后续会考虑其他平台

具体细节可以看 我的博客 goodblog-charlie 其实就是 github 的 readme ,只是顺便分享博客了,哈哈

github -> https://github.com/charlie-captain/MeowAI

More things

0 基础 AI 小白,几乎 90%代码通过 ChatGPT 生成

内容概要:本文详细介绍了一个基于Python实现的SO-ESN项目,即利用蛇群优化算法(SO)优化回声状态网络(ESN)进行多输入单输出回归预测的完整实例。文章涵盖了项目背景、目标、挑战与解决方案,系统阐述了模型架构,包括数据预处理、特征降维、ESN网络结构、SO优化算法集成、评估可视化及模型解释性等模块。通过将SO算法与ESN深度融合,实现了对ESN关键参数的智能优化,显著提升了模型的预测精度、鲁棒性、泛化能力与收敛速度。文中还提供了核心代码示例,涵盖数据处理、PCA降维、ESN定义、SO算法实现、模型训练预测、结果评估与SHAP解释性分析,展示了从建模到部署的全流程。; 适合人群:具备一定Python编程和机器学习基础,熟悉神经网络与优化算法的研发人员、高校学生及科研工作者,尤其适合从事时间序列预测、智能优化与回归建模相关工作的技术人员; 使用场景及目标:①应用于金融、工业、交通、能源等领域的多输入单输出时序预测任务;②研究智能优化算法(如SO)与神经网络(如ESN)的融合机制;③实现高精度、自动化、可解释的回归建模;④降低人工调参成本,提升模型稳定性与泛化性能; 阅读建议:此资源以实战项目为导向,建议读者结合代码逐步复现各模块流程,重点关注SO算法与ESN的集成逻辑、参数优化机制及模型评估与解释方法,建议在实际数据集上进行调参与验证,以深入掌握其应用技巧与优化策略。
内容概要:本文围绕无线传感器网络中的LEACH和LEACH-C协议展开研究,通过Matlab代码实现对两种协议的仿真与分析。重点探讨了LEACH(低能耗自适应聚类层次)协议的工作机制及其在能量效率方面的优势,对比了LEACH-C(集中式LEACH)协议在簇头选择和网络性能上的改进。文中详细介绍了协议的核心算法流程、网络模型构建、仿真参数设置及结果分析,帮助读者深入理解无线传感器网络的能量优化策略和路由协议设计原理。; 适合人群:具备一定无线传感器网络基础知识和Matlab编程能力的高校学生、科研人员及从事物联网、传感网相关技术研发的工程技术人员;尤其适合正在进行相关课题研究或毕业设计的研究生和本科生。; 使用场景及目标:① 掌握LEACH与LEACH-C协议的基本原理与实现方式;② 借助Matlab仿真平台完成协议复现与性能对比;③ 为后续优化路由算法、提升网络能效提供技术参考与实验基础;④ 支持教学演示、课程项目开发与学术研究验证。; 阅读建议:建议读者结合文档中的代码逐步调试运行,理解每一步的仿真逻辑,尝试调整网络参数(如节点数量、轮数、能量模型等)观察性能变化,从而加深对协议行为的理解。同时可参考文中提到的其他相关技术方向拓展研究思路。【无线传感器网络】LEACH和LEACH-C协议研究(Matlab代码实现)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值