由上图可知:
两条直线最多一个交点,将平面分成了4个区域;三条直线最多三个交点,将平面分成了7个区域;可以推出:N条直线 M个交点,区域数为N+M+1。
可以推出:
每增加一条直线,如果增加m个交点,那么这条直线被新增加的m个交点,分成(m+1)段。每一段又会将原来的一个区域分成两块,因此,新增加了(m+1)个新区域。增加第N+1条直线时,最多与前面N条直线全部相交,增加n个交点。因此,最多增加n+1个区域。由此可得递推式:
f(n)代表n条直线时的区域的个数。
第n+1条直线最多和第n条直线 有n个交点。
所以区域数增加n+1。
解得:
这里首先用到了一个数学定理:
已知平面内有n条直线,这n条直线有m个交点(p条直线交于一点时,交点数计p-1)。则这n条直线把这个平面分成了n+m+1个平面。
这个定理的推论如下:
已知平面内有n条直线,则这n条直线最多可以把平面分成1+n+ ,
更为优雅的一种写法是: 。
如果换成折线呢?
增加第N+1条折线时,最多与前面的N条折线有 个交点,最多增加4n+1个区域,递推式为:
解得: