这道题做的相当纠结,不过有了一点进步总是好的,从这道题中我这个菜鸟学到了一些最基本的东西,总结一下
最小费用最大流是在最大流的基础上求最小费用,对于这种题来说我以前都习惯写邻接矩阵,不过这题是无向图又可能有重边,所以最后只能放弃改成了邻接表的方法,以前只会写邻接链表,用指针构造,比较挫,这次学习了比较通用的方法:
基本上模版如下:
struct
{
int next;
int m,n,cost,cap;
}edge[50005];
int head[1005];//表头
void addedge(int m,int n,int cap,int cost)
{
edge[cnt].m=m;
edge[cnt].n=n;
edge[cnt].cost=cost;
edge[cnt].cap=cap;
edge[cnt].next=head[m];
head[m]=cnt;
cnt++;
}
这里cnt是一个全局变量,唯一标识当前待插入的边表。注意表头head的更新操作,有点像指针链表的前插
然后,就是算法的核心部分:对残存网络的维护上,这次又犯了几个错误:初始时反向边应该为0,我一不小心写错了,然后是最后对cost的操作直接叠加就可以了,因为每次spfa后dist的值已经考虑过修改原流的那部分了(就是cost有加有减)
还有就是碰到tle,把cin改成scanf都不行了时想想是不是循环退不出去了,别急着搜报告,检查一下循环体里的逻辑,这次是因为把更新fa和qe的操作if里了导致的错误
最后贴一下挫代码吧,大牛们别看了
#include <iostream>
#include <memory.h>
#include <cstdio>
#include <algorithm>
using namespace std;
int fieldnum,pathnum;//农场数和路径数
int fa[1005];
bool vis[1005];
int dist[1005];
int cnt;
int mq[1010];
int qe[1005];
const int inf = 0x7fffffff;
struct
{
int next;
int m,n,cost,cap;
}edge[50005];
int head[1005];//表头
void addedge(int m,int n,int cap,int cost)
{
edge[cnt].m=m;
edge[cnt].n=n;
edge[cnt].cost=cost;
edge[cnt].cap=cap;
edge[cnt].next=head[m];
head[m]=cnt;
cnt++;
}
bool spfa()
{
for(int i=1;i<=fieldnum;i++)
dist[i]=inf;
dist[0]=0;
memset(vis,false,sizeof(vis));
memset(fa,-1,sizeof(fa));
//memset(qe,0,sizeof(qe));
//queue <int> mq;
fa[0]=0;
qe[0]=0;
mq[0]=0;
int f=0,r=1;
//mq.push(0);
vis[0]=true;
int cur;
while(f!=r)
{
cur=mq[f];
f++;
if(f==1010)
f=0;
for(int i=head[cur];i!=-1;i=edge[i].next)
{
if(edge[i].cap!=0&&dist[edge[i].n]>dist[cur]+edge[i].cost)
{
dist[edge[i].n]=dist[cur]+edge[i].cost;
if(vis[edge[i].n]==false)
{
mq[r]=edge[i].n;
r++;
if(r==1010)
r=0;
vis[edge[i].n]=true;
}
fa[edge[i].n]=cur;//保存节点
qe[edge[i].n]=i;//保存和这个节点相关联的边号
}
}
vis[cur]=false;
}
if(dist[fieldnum]==inf)
return false;
else
return true;
}
int fordfulkerson()
{
//增加一个超级源点,其标号为0
//残存网络remain,若两点之间有路,则remain[i][j]=remain[j][i]=1
addedge(0,1,2,0);
addedge(1,0,0,0);
int totalcost=0;
while(spfa()!=false)
{
//如果找到了增广路径,则根据fa,求改路径上点的remain,并更新cost
for(int i = fieldnum; i!= 0; i=fa[i])
{
edge[qe[i]].cap -= 1;
edge[qe[i]^1].cap += 1; //表示其反向边
}
totalcost=totalcost+dist[fieldnum];
}
return totalcost;
}
int main()
{
cin>>fieldnum>>pathnum;
int m,n,c;
for(int i=0;i<=fieldnum;i++)
head[i]=-1;//初始化表头
for(int i=1;i<=pathnum;i++)
{
scanf("%d%d%d",&m,&n,&c);
//cost[m][n]=cost[n][m]=c;
addedge(m,n,1,c);
addedge(n,m,0,-c);
addedge(n,m,1,c);
addedge(m,n,0,-c);
}
//构造一个最小费用最大流模型
//题目中说是往返,这里模拟成一次走两个人,只走一次,每条路经的流量只为1,表示只能承受 最多一个人
//为此,增加一个超级源点,其到处发点farm的流量为2
//最后检查到达barn的流量,若为2,则表示路径可以到达
//在fordfulkerson算法中使用spfa找到cost最小的增广路
int result=fordfulkerson();
cout<<result<<endl;
return 0;
}