1242 . 斐波那契数列的第N项
基准时间限制:1 秒 空间限制:65536 KB 分值: 0
斐波那契数列的定义如下:
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input 示例
11
Output 示例
89
编号 | 相关问题 | 分值 |
1236 | 序列求和 V3 | 320 |
1195 | 斐波那契数列的循环节 | 640 |
1031 | 骨牌覆盖 | 10 |
1194 | Fib(N) mod Fib(K) | 160 |
1193 | 斐波那契数列的分解 | 320 |
斐波那契数列,矩阵快速幂求解。。
Fn = Fn-1 + Fn-2
转变成矩阵形式为:
[ Fn ] = [ 1 , 1 ] * [ Fn-1 ] -> [ 1*Fn-1 + 1* Fn-2 ] = [ Fn-1 + Fn-2 ]
[ Fn-1 ] [ 1 , 0 ] [ Fn-2 ] [ 1*Fn-1 + 0*Fn-2 ] [ Fn-1 ]
#include <iostream>
using namespace std;
#define mod(x) ((x)%MOD)
#define MOD 1000000009
#define LL long long
struct mat{
LL a, aa;
LL b, bb;
};
mat mm(LL a, LL aa, LL b, LL bb){
mat ret;
ret.a=a; ret.aa=aa;
ret.b=b; ret.bb=bb;
return ret;
};
mat operator * (mat x, mat y){
mat ret;
ret.a =mod(x.a*y.a + x.aa*y.b );
ret.aa=mod(x.a*y.aa+ x.aa*y.bb);
ret.b =mod(x.b*y.a + x.bb*y.aa);
ret.bb=mod(x.b*y.aa+ x.bb*y.bb);
return ret;
}
mat pow_mat(mat x, LL n){
if( 0==n ) return mm(1,1,1,0);
if( 1==n ) return x;
mat ret = pow_mat(x*x, n>>1);
if( n&1 ) ret = x*ret;
return ret;
}
int main(){
LL n;
while( cin>>n ){
if( 0==n ) cout<<0<<endl;
else if( 1==n ) cout<<1<<endl;
else if( 2==n ) cout<<1<<endl;
else{
n -= 2;
mat x = mm(1,1,1,0);
x = pow_mat(x, n);
cout<<mod(x.a + x.aa)<<endl;
}
}
return 0;
}