20140911 【 初等数论 】 51nod 1242 . 斐波那契数列的第N项

14 篇文章 0 订阅
6 篇文章 0 订阅

提一个问题
  徐华杰  向下
1242 . 斐波那契数列的第N项
基准时间限制:1 秒 空间限制:65536 KB 分值: 0
斐波那契数列的定义如下:

F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
Input 示例
11
Output 示例
89
请选择语言:     允许其他人查看提交的代码
编号 相关问题 分值
1236序列求和 V3 320
1195斐波那契数列的循环节 640
1031骨牌覆盖 10
1194Fib(N) mod Fib(K) 160
1193斐波那契数列的分解 320










































斐波那契数列,矩阵快速幂求解。。

Fn = Fn-1 + Fn-2


转变成矩阵形式为:

[ Fn    ] = [ 1 , 1 ] * [ Fn-1 ]  ->  [ 1*Fn-1 + 1* Fn-2 ] = [ Fn-1 + Fn-2 ]

[ Fn-1 ]    [ 1 , 0 ]   [ Fn-2 ]        [  1*Fn-1 + 0*Fn-2 ]    [ Fn-1            ]






#include <iostream>
using namespace std;
#define mod(x)  ((x)%MOD)
#define MOD 1000000009
#define LL long long
struct mat{
    LL a, aa;
    LL b, bb;
};

mat mm(LL a, LL aa, LL b, LL bb){
    mat ret;
    ret.a=a;    ret.aa=aa;
    ret.b=b;    ret.bb=bb;
    return ret;
};

mat operator * (mat x, mat y){
    mat ret;
    ret.a =mod(x.a*y.a + x.aa*y.b );
    ret.aa=mod(x.a*y.aa+ x.aa*y.bb);
    ret.b =mod(x.b*y.a + x.bb*y.aa);
    ret.bb=mod(x.b*y.aa+ x.bb*y.bb);
    return ret;
}

mat pow_mat(mat x, LL n){
    if( 0==n )  return mm(1,1,1,0);
    if( 1==n )  return x;
    mat ret = pow_mat(x*x, n>>1);
    if( n&1 )   ret = x*ret;
    return ret;
}
int main(){
    LL n;
    while( cin>>n ){
        if( 0==n )      cout<<0<<endl;
        else if( 1==n ) cout<<1<<endl;
        else if( 2==n ) cout<<1<<endl;
        else{
            n -= 2;
            mat x = mm(1,1,1,0);
            x = pow_mat(x, n);
            cout<<mod(x.a + x.aa)<<endl;
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值