60*360T=360T+360M(分针秒针重合)
360T=30T+360N(时针分针重合)
以上两式M N为正整数,可得
T=(1/59)M
T=(12/11)N
即有
(1/59)M=(12/11)N
M=(59*12/11)N
由于M N为正整数,所以N最小为11,则T至少为
T=(12/11)N=12(小时)
故一天中三针重合只有0点和12点
题描述:时分秒针一天中能重合几次?
看一些搜索引擎上,对该问题的解法大都是一天只有两次重合,即0点和12点。而我的解法则不同,不是说别人的解法不对,我倒觉得这题从另一个角度考虑更有趣,以下是分析过程。
前提:钟表一周有60格,时针每12分钟移动一格,分针每1分钟移动一格,秒针每1秒钟移动一格,其他种类的不算。
分析:
1、1小时内,时针和分针只会重合一次,因为分针会移动一周,而时针只会移动5格,期间两指针能且只能重合一次。
2、因为时针每12分钟才移动一格,所以每次移动后,会有11分59秒的时间来等待分针来汇合;同样,分针每60秒移动一格,每次移动后,会有59秒的时间来等待秒针来汇合。
3、地球人都知道(一定要东北口音)一天有24小时,但每小时,时针超前分针的格数不同,1点超前5格,2点超前10格,……。问题出来了,以每个整点为起点,需要计算时针需要移动多少格(分钟)才能与时针重合?
列方程:X=S+X/12
其中:X:分针需要移动的格数(分钟);S:时针超前分针的格数;注意X/12一定是整除,不需要小数。
解得:X=12×S/11,这里除法依旧是整除。
知道了需要多久分针能与时针汇合,剩下秒针就好办了,分针不动,静静的等待秒针X秒就OK了。
4、解法:循环24(0~23)小时,计算出每个整点,时针超前分针多少格数,然后计算与时针汇合后的需要的分钟数,再加上同样数目的秒数,一切都好了!
以下是Ruby的一段解法脚本,供朋友们参考,简单的很:
(0..23).each do |item|
s = (item % 12) * 5
x = 12 * s / 11
#此处要注意,我们每次等待的时间有限,不能超过1小时
next if x >= 60
puts item.to_s + ":" + x.to_s + ":" + x.to_s
end
最终答案(共计22个时刻):
0:0:0
1:5:5
2:10:10
3:16:16
4:21:21
5:27:27
6:32:32
7:38:38
8:43:43
9:49:49
10:54:54
12:0:0
13:5:5
14:10:10
15:16:16
16:21:21
17:27:27
18:32:32
19:38:38
20:43:43
21:49:49
22:54:54
闭门造的车开出来了,大家看看吧!
//----------------------------------------------------------------------------------------------------------------//
时钟是我们日常生活中不可缺少的计时工具。生活中也时常会遇到与时钟相关的问题。
关于时钟的问题有:求某一时刻时针与分针的夹角,两针重合,两针垂直,两针成直线等类型。要解答时钟问题就要了解、熟悉时针和分针的运动规律和特点。
一个钟表一圈有60个小格,这里计算就以小格为单位。1分钟时间,分针走1个小格,时针指走了1/60*5=1/12个小格,所以每分钟分针比时针多走11/12个小格,以此作为后续计算的基础,对于解决类似经过多长时间时针、分针垂直或成直线的问题非常方便、快捷。
经典例题
例1 从5时整开始,经过多长时间后,时针与分针第一次成了直线?
5时整时,分针指向正上方,时针指向右下方,此时两者之间间隔为25个小格(表面上每个数字之间为5个小格),如果要成直线,则分针要超过时针30个小格,所以在此时间段内,分针一共比时针多走了55个小格。由每分钟分针比时针都走11/12个小格可知,此段时间为55/(11/12)=60分钟,也就是经过60分钟时针与分针第一次成了直线。
例2 从6时整开始,经过多少分钟后,时针与分针第一次重合?
6时整时,分针指向正上方,时针指向正下方,两者之间间隔为30个小格。如果要第一次重合,也就是两者之间间隔变为0,那么分针要比时针多走30个小格,此段时间为30/(11/12)=360/11分钟。
例3 在8时多少分,时针与分针垂直?
8时整时,分针指向正上方,时针指向左下方,两者之间间隔为40个小格。如果要两者垂直,有两种情况,一个是第一次垂直,此时两者间隔为15个小格(分针落后时针),也就是分针比时针多走了25个小格,此段时间为25/(11/12)=300/11分钟;另一次是第二次垂直,此时两者间隔仍为15个小格(但分针超过时针),也就是分针比时针多走了55个小格,此段时间为55/(11/12)=60分钟,时间变为9时,超过了题意的8时多少分要求,所以在8时300/11分时,分针与时针垂直。
由上面三个例题可以看出,求解此类问题(经过多少时间,分针与时间成多少夹角)时,采用上述方法是非常方便、简单、快捷的,解题过程形象易懂,结果正确率高,是一种非常好的方法。解决此类问题的一个关键点就是抓住分针比时针多走了多少个小格,而不论两者分别走了多少个小格。下面再通过几个例题来介绍这种方法的用法和要点。
例4 从9点整开始,经过多少分,在几点钟,时针与分针第一次成直线?
9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要第一次成直线,也就是两者之间间隔变为30个小格,那么分针要比时针多走15个小格,此段时间为15/(11/12)=180/11分钟。
例5 一个指在九点钟的时钟,分针追上时针需要多少分钟?
9时整时,分针指向正上方,时针指向正右方,两者之间间隔为45个小格。如果要分针追上时针,也就是两者之间间隔变为0个小格,那么分针要比时针多走45个小格,此段时间为45/(11/12)=540/11分钟。