222. Count Complete Tree Nodes

222. Count Complete Tree Nodes


Given a complete binary tree, count the number of nodes.

Note:

Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

Example:

Input: 
    1
   / \
  2   3
 / \  /
4  5 6

Output: 6

方法1: recursion

YRB: https://www.cnblogs.com/yrbbest/p/4993469.html

思路:

任何数都可以在O(n)的时间内得到count,但是这道题可不可以利用complete BST 的性质加速一些呢?关键在于如果缺节点一定从右边开始缺。所以求一颗complete BST的高度,延最左路径找就可以。full BST的定义是节点数为2^h - 1。利用如下的性质递归求半边解:

  1. 如果leftHeight == rightHeight, 左子树是full BST, 右子树是complete BST.
  2. 如果leftHeight != rightHeight, 左子树是complete BST, 右子树是full BST.

易错点

  1. 注意每次返回结果 (1 << leftHeight) + countNodes(root.right): 2 ^ leftHeight - 1 + 1 + countNodes(root.right) 。这里+1是因为把根节点也算进去,化简一下就是 (1 << leftHeight) + countNodes(root.right)。

Complexity

Time complexity: O(logn * logn) , 每一层需要求一下深度,需要往下递归调用深度的次数。
Space complexity: O(logn): 栈的深度

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int countNodes(TreeNode* root) {
        if (!root) return 0;
        int leftHeight = getHeight(root -> left);
        int rightHeight = getHeight(root -> right);
        
        if (leftHeight == rightHeight) {
            return (1 << leftHeight) + countNodes(root -> right);
        }
        else {
            return countNodes(root -> left) + (1 << rightHeight);
        }
    }
    
    int getHeight(TreeNode* root){
        if (!root) return 0;
        return getHeight(root -> left) + 1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值