Sieve of Eratosthenes solution

Sieve of Eratosthenes solution


Count the number of prime numbers less than a non-negative number, n.

Example:

Input: 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

方法1: Sieve of Eratosthenes solution

grandyang: https://www.cnblogs.com/grandyang/p/4462810.html

思路:

用hint中的这个算法,穷举所有不为prime,小于n的数字。下面这个算法做了一些优化,都是免去不必要的搜索:

  1. 从0开始(其实从2开始就可以),遍历至sqrt(n),将所有 i 的整数倍都标记为false。
  2. if (prime[i]):如果本身自己就不是质数,一定被前面的因数set好了,可以跳过。
  3. 搜索i的整数倍从 i 倍开始,也就是for (j = i * i, j < n, j += i),前面的搜索是重复的。

最后求一下所有没被set为false的个数。

Complexity

Time Complexity: O(nloglogn), 时间复杂度等于(n/2+n/3+n/5…+n/比n小的最大素数) = n*(小于n的所有素数倒数的和) = O(n * log(logn)), see wiki https://en.wikipedia.org/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes
Space Complexity: O(n)

class Solution {
public:
    int countPrimes(int n) {
        vector<bool> prime(n, true);
        prime[0] = false, prime[1] = false;
        for (int i = 0; i < sqrt(n); ++i) {
            if (prime[i]) {
                for (int j = i*i; j < n; j += i) {
                    prime[j] = false;
                }    
            }    
        }
        return count(prime.begin(), prime.end(), true);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值