Numpy学习笔记2-创建array的几种方式

创建array的几种方式:

1、通过python的标准类型转换(如:lists,tuples)

2、通过Munpy固有的一些函数创建对象(如:arange,zones等)

3、通过从磁盘读取数组,或者标准的格式

4、通过字节数组,通过使用字符串或者缓冲区

5、使用特定的库函数,例如:random


下面是常用的几种:

>>> import numpy as np
>>> x = np.float32(1.0)
>>> x
1.0
>>> y = np.int_([1,2,4])
>>> y
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
>>> z
array([0, 1, 2], dtype=uint8)
其中:

np的dtype类型可以被当做函数类使用,用来将python的数据转换成array类型。

numpy.arange

numpy.arange([start]stop[step]dtype=None)

函数  ones  创建一个全1的数组,函数  empty  创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float64。
其它函数array, zeros, zeros_like, ones, ones_like, empty, empty_like, arange, linspace, rand, randn, fromfunction, fromfile参考手册:Array creation routines
>>> arange( 10,30,5 )
array([10,15,20,25])
>>> arange( 0,2,0.3 ) # it accepts float arguments
array([0. , 0.3,0.6,0.9,1.2,1.5,1.8])
当 arange 使用浮点数参数时,由于有限的浮点数精度,通常无法预测获得的元素个数。因此,最好使用函数 linspace 去接收我们想要的元素个数来代替用range来指定步长。

linspace 返回指定范围指定间隔的数组。官方文档
numpy.linspace(startstopnum=50endpoint=Trueretstep=Falsedtype=None)
参数retstep指定是否返回步进长度,如果为True则返回元组(样本数据,步进长度)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值