win55
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
18、复值惯性神经网络时变延迟下的固定时间钉扎同步研究
本文研究了复值惯性神经网络在时变延迟情况下的固定时间钉扎同步和自适应同步问题。通过设计新型钉扎控制器和钉扎自适应控制器,并结合包含状态导数的Lyapunov函数和不等式分析技术,得出了系统在固定时间内实现同步的充分条件,并估计了稳定时间的上界。数值示例验证了理论结果的有效性,仿真结果表明系统能够在预期时间内达到同步,且自适应增益最终收敛到设定值。研究为复杂神经网络的同步控制提供了新的思路和方法。原创 2025-08-31 02:16:43 · 51 阅读 · 0 评论 -
17、复值惯性神经网络固定时间同步控制研究
本文围绕具有时变延迟的复值惯性神经网络(CVINNs)的固定时间同步问题展开研究,设计了新的钉扎控制器和自适应控制器。通过构建新颖的Lyapunov函数,结合固定时间稳定性理论,推导出系统实现同步的充分条件,并给出了稳定时间的上界估计。研究结果不仅丰富了CVINNs的同步控制理论,也为实际应用中提高系统的同步性能提供了理论支持。未来的研究可拓展至更复杂的网络拓扑结构和干扰因素,提升系统的鲁棒性与实用性。原创 2025-08-30 16:53:41 · 56 阅读 · 0 评论 -
16、具有时滞的复值双向联想记忆神经网络的固定时间同步
本文围绕具有时滞的复值双向联想记忆神经网络(CVBAMNNs)的固定时间同步问题展开研究。通过设计包含独立参数的控制器,结合Lyapunov稳定性理论和相关引理,提出了实现系统固定时间同步的准则,并推导出稳定时间的上界估计公式。研究通过两个具体示例验证了所提出方法的有效性,并展示了其相较于已有方法在稳定时间估计上的优越性。结果表明,所设计控制器能够确保系统在不同初始条件下实现快速同步,且稳定时间上界与初始条件无关。本文的研究为复杂神经网络系统的快速同步控制提供了新的思路和方法。原创 2025-08-29 13:23:57 · 30 阅读 · 0 评论 -
15、复值神经网络的同步与反同步及固定时间同步研究
本文研究了复值惯性神经网络的同步与反同步问题,以及复值双向联想记忆神经网络的固定时间同步问题。通过定义反同步误差系统并设计控制器,结合构造Lyapunov泛函和推导线性矩阵不等式(LMI)条件,得出了系统实现同步或反同步的充分条件,并通过示例验证了方法的有效性。对于固定时间同步问题,提出了非线性延迟控制器和新的同步准则,确保稳定时间与初始条件无关,同时给出了更准确的稳定时间估计。研究为复值神经网络在复杂系统中的应用提供了理论支持。原创 2025-08-28 10:03:22 · 40 阅读 · 0 评论 -
14、复值神经网络与复值惯性神经网络的同步与反同步研究
本文围绕复值神经网络(CVNNs)与复值惯性神经网络(CVINNs)的同步与反同步问题展开研究,重点分析了具有泄漏延迟和时变延迟情况下的控制策略。针对复值神经网络,提出了反同步控制准则,并通过两个示例验证了理论结果的有效性。对于复值惯性神经网络,通过变量替换将二阶系统转换为一阶系统形式,设计了控制器,并利用Lyapunov泛函分析误差系统的稳定性,最终得到了实现同步的充分条件。研究结果通过数学推导和仿真示例进行了验证,为复值神经网络在通信、信号处理等领域的应用提供了理论支持。原创 2025-08-27 13:30:45 · 27 阅读 · 0 评论 -
13、复值神经网络反同步控制研究
本博文研究了含混合延迟的复值神经网络(CVNNs)反同步控制问题,分别基于可分离方法和不可分离方法提出了系统实现反同步的充分条件。通过构造合适的Lyapunov泛函并设计有效的控制器,分析了系统在泄漏延迟和时变延迟影响下的反同步特性。同时,对两种方法的适用条件、控制器设计和实际应用进行了对比和讨论,并展望了未来的研究方向。原创 2025-08-26 11:32:14 · 38 阅读 · 0 评论 -
12、复值双向联想记忆神经网络(CVBAMNNs)的反同步控制研究
本文围绕复值双向联想记忆神经网络(CVBAMNNs)的反同步控制问题展开研究,设计了有效的状态反馈控制律,并通过不等式技巧和Lyapunov泛函方法,给出了系统实现指数反同步的充分条件。研究填补了CVBAMNNs反同步控制领域的空白,具有重要的理论价值和实际应用意义。同时,分析了实际应用中可能面临的挑战及应对策略,为后续研究提供了方向。原创 2025-08-25 15:00:24 · 27 阅读 · 0 评论 -
11、复值双向联想记忆神经网络的拉格朗日指数稳定性与反同步控制研究
本文研究了具有时变延迟的复值双向联想记忆神经网络(CVBAMNNs)的拉格朗日指数稳定性与指数反同步控制问题。首次针对此类网络模型探讨了反同步控制的充分条件,并基于Lyapunov泛函和不等式技术进行了理论推导。通过分离系统实部与虚部、引入相关定义与引理,建立了确保系统实现指数反同步的控制器设计方法。研究成果为复杂神经网络系统的稳定性分析和控制设计提供了新的理论支持,并展望了未来在控制策略优化、模型扩展和实验验证等方面的研究方向。原创 2025-08-24 11:27:21 · 30 阅读 · 0 评论 -
10、复值双向联想记忆神经网络的拉格朗日指数稳定性研究
本文研究了复值双向联想记忆神经网络(CVBAMNNs)的拉格朗日指数稳定性问题,提出了基于代数结构和线性矩阵不等式(LMI)的稳定性判据。通过可分离与非分离方法,分别推导出系统全局指数稳定的充分条件,并利用具体示例验证了这些判据的有效性。研究表明,LMI形式的稳定性条件在分析复值神经网络的拉格朗日指数稳定性时具有更小的保守性,能够得到更优的指数收敛球。研究成果为复值神经网络在信号处理、模式识别等领域的应用提供了理论支持。原创 2025-08-23 14:09:07 · 29 阅读 · 0 评论 -
9、时变时滞复值双向联想记忆神经网络的拉格朗日指数稳定性研究
本文研究了时变时滞复值双向联想记忆神经网络(CVBAMNNs)的拉格朗日指数稳定性问题。基于实部与虚部分离的激活函数形式,结合Lyapunov稳定性理论和积分不等式分析方法,提出了系统全局指数稳定的充分条件,并确定了系统的收敛吸引集。研究成果为复值神经网络在图像处理、模式识别等领域的应用提供了理论支撑。原创 2025-08-22 09:46:49 · 34 阅读 · 0 评论 -
8、具有恒定延迟的复值双向联想记忆神经网络的有限时间稳定性分析
本文研究了具有恒定延迟的复值双向联想记忆神经网络(CVBAMNNs)的有限时间稳定性问题。通过分离实部和虚部,构建了一个易于处理的整体系统,并利用非线性测度方法和Lyapunov函数方法,推导了确保系统平衡点存在且唯一的充分条件以及有限时间稳定性准则。研究结果以线性矩阵不等式(LMIs)的形式给出,并通过两个数值示例验证了理论结果的有效性。本文首次探讨了延迟CVBAMNNs模型在有限时间区间内的动态行为,拓展了复值神经网络稳定性分析的理论框架。原创 2025-08-21 16:55:48 · 22 阅读 · 0 评论 -
7、含离散和分布时滞的复值神经网络的Hopf分岔分析
本文研究了含离散和分布时滞的复值神经网络的Hopf分岔问题。通过分析系统在不同时滞范围内的稳定性,确定了Hopf分岔的临界时滞值,并利用正规形理论和中心流形定理分析了分岔的方向、周期解的稳定性和周期变化。研究中通过数学变换和关键参数计算,得到了描述分岔特性的参数μ₂、κ₂和T₂,并通过数值示例验证了理论分析的正确性。研究结果对理解复值神经网络的动力学行为具有重要意义,并为未来研究更复杂网络结构提供了理论基础。原创 2025-08-20 13:25:46 · 25 阅读 · 0 评论 -
6、复值神经网络稳定性与Hopf分岔分析
本文深入研究了复值神经网络(CVNN)的稳定性与Hopf分岔特性。通过分析实虚分离型与非实虚分离型激活函数的不同情况,分别给出了系统稳定性的判断条件。同时,针对具有离散和分布延迟的CVNN模型,推导了特征方程并分析了系统发生Hopf分岔的条件。研究结果不仅丰富了复值神经网络的动力学理论,也为滤波、图像处理等实际应用提供了重要的指导。原创 2025-08-19 10:24:53 · 26 阅读 · 0 评论 -
5、具有恒定延迟的复值神经网络稳定性分析
本文研究了具有恒定延迟的复值神经网络(CVNNs)的稳定性问题。针对激活函数是否可分离实部和虚部的两种情况,分别采用可分离方法和不可分离方法,推导出保证系统平衡点存在、唯一且全局渐近稳定的新条件。通过同胚理论和Lyapunov泛函方法,建立了依赖于延迟的充分稳定性准则,并利用多个示例验证了所提方法的有效性。此外,还对两种方法进行了对比分析,并总结了稳定性分析的流程。研究结果为CVNNs在信号处理、模式识别等领域的应用提供了理论支持。原创 2025-08-18 09:30:10 · 32 阅读 · 0 评论 -
4、具有恒定延迟的复值神经网络稳定性准则
本文研究了具有恒定延迟的复值神经网络(CVNNs)的稳定性问题。与以往研究相比,仅要求激活函数满足Lipschitz条件,而不假设其有界或解析,从而拓宽了结果的适用范围。通过将复值系统转化为等价的2n维实值延迟系统,并基于线性矩阵不等式(LMI),推导出保证系统平衡点存在性、唯一性和全局渐近稳定性的充分条件。研究还指出前人工作中定理证明的错误,并通过示例验证了所提方法的有效性和较低的保守性。最后,文章展望了未来在延迟相关稳定性、复杂激活函数及实际应用方面的研究方向。原创 2025-08-17 10:06:19 · 24 阅读 · 0 评论 -
3、复值神经网络的最新进展与研究方向
本文综述了复值神经网络的最新研究进展,重点介绍了复值双向联想记忆神经网络(CVBAMNNs)和复值惯性神经网络(CVINNs)的动力学行为分析及研究方法。文章总结了稳定性、同步控制和镇定等问题的技术手段,并探讨了复值神经网络在信号处理、图像处理和通信等领域的应用前景。同时,指出了未来研究方向,包括理论完善、应用拓展和技术融合等。原创 2025-08-16 09:32:38 · 36 阅读 · 0 评论 -
2、复值神经网络的研究进展
本文综述了复值神经网络(CVNNs)的研究进展,重点介绍了其动态行为的分析方法,包括基于实部和虚部分离的研究方法以及将复值系统作为整体的非分离研究方法。文中详细讨论了两种方法的理论基础、计算复杂度、适用场景及其研究成果,并对复值神经网络在信号处理、图像处理、通信系统和金融等领域的应用进行了介绍。最后,文章展望了未来研究方向,包括降低计算复杂度、拓展应用领域和深入研究复域理论等。原创 2025-08-15 09:31:22 · 40 阅读 · 0 评论 -
1、复值神经网络:原理、发展与应用
本文全面介绍了复值神经网络的原理、发展历程及其在多个领域的应用。文章从神经网络的历史出发,逐步引出复值神经网络的概念及其独特优势,详细阐述了其在处理多维数据和复杂信号中的作用。同时,文章总结了复值神经网络的动力学研究进展,包括稳定性、同步性和反同步控制等内容,并探讨了其在图像处理、信号处理、机器人技术和通信系统等领域的应用。最后,文章展望了复值神经网络的未来研究方向,包括更复杂动力学行为的研究、新型激活函数的设计、多学科交叉融合以及硬件实现等方面,强调了其在人工智能领域的重要潜力和广阔前景。原创 2025-08-14 14:46:26 · 67 阅读 · 0 评论