caffe对船的分类过程

该博客介绍了如何利用Caffe框架和AlexNet模型对船进行分类。首先,博主详细描述了数据集的准备过程,包括创建训练集和验证集的文件列表。接着,博主展示了如何将数据集转换为lmdb格式,并计算均值。然后,配置了网络结构(train_val.prototxt和solver.prototxt)并运行训练网络。最后,博主提供了测试网络的步骤,包括使用deploy.prototxt和已训练的模型进行图片分类。
摘要由CSDN通过智能技术生成

使用AlexNet,caffe下实现船的分类过程

1、准备数据集

在caffe/data目录下建立两个数据集train(训练集)和val(验证集),创建文件列表filelist.sh 和给定分类类别(1到n)。

filelist.sh  ------------------------------创建文件列表,包含标签

# /usr/bin/env sh
DATA=data/boat2class

#training data
DATA1=data/boat2class/jun_500_train
DATA2=data/boat2class/ming_500_train
echo "Create train2.txt..."
rm -rf $DATA/train2.txt
find $DATA1 -name *.jpg | cut -d '/' -f3-4 | sed "s/$/ 1/">>$DATA/train2.txt
find $DATA2 -name *.jpg | cut -d '/' -f3-4 | sed "s/$/ 2/">>$DATA/tmp.txt
cat $DATA/tmp.txt>>$DATA/train2.txt
rm -rf $DATA/tmp.txt
echo "Done.."

#validation data
DATA3=data/boat2class/jun_100_val
DATA4=data/boat2class/ming_100_val
echo "Create val2.txt..."
rm -rf $DATA/val2.txt
find $DATA3 -name *.jpg | cut -d '/' -f3-4 | sed "s/$/ 1/">>$DATA/val2.txt
find $DATA4 -name *.jpg | cut -d '/' -f3-4 | sed "s/$/ 2/">>$DATA/tmp.txt
cat $DATA/tmp.txt>>$DATA/val2.txt
rm -rf $DATA/tmp.txt
echo "Done.."

2、转换为lmdb代码

代码中需要修改MY,数据集的路径,保存的路径

保存为文件create_lmdb.sh-------------------

#!/usr/bin/env sh<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值