快速排序的非递归实现

快速排序的非递归实现

首先说明一下快速排序是对冒泡排序的改进。为什么这么说呢?想一下冒泡排序,它把序列分成了两部分,前半部分无序,后半部分升序排列,并且后半部分的数都大于前半部的数。

由此可得到快速排序和冒泡排序的一些共同点:

  1. 都要经历n趟排序
  2. 每趟排序要经历O(n)次比较
  3. 都是后半部分元素比前半部大

而不同之处就在于冒泡排序的交换操作发生相邻的元素之间,即一趟排序可以要经过多次交换操作;快速排序的交换操作发生在间隔比较远的两个元素之间,一趟排序要经过交换操作次数会少一些。

下面给出快速排序的递归和非递归实现代码:

?
#include<iostream>
#include<vector>
#include<stack>
#include<cstdlib>
#include<algorithm>
using  namespace  std;
 
/**把数组分为两部分,轴pivot左边的部分都小于轴右边的部分**/
template  < typename  Comparable>
int  partition(vector<Comparable> &vec, int  low, int  high){
     Comparable pivot=vec[low];  //任选元素作为轴,这里选首元素
     while (low<high){
         while (low<high && vec[high]>=pivot)
             high--;
         vec[low]=vec[high];
         while (low<high && vec[low]<=pivot)
             low++;
         vec[high]=vec[low];
     }
     //此时low==high
     vec[low]=pivot;
     return  low;
}
 
/**使用递归快速排序**/
template < typename  Comparable>
void  quicksort1(vector<Comparable> &vec, int  low, int  high){
     if (low<high){
         int  mid=partition(vec,low,high);
         quicksort1(vec,low,mid-1);
         quicksort1(vec,mid+1,high);
     }
}
 
/**使用栈的非递归快速排序**/
template < typename  Comparable>
void  quicksort2(vector<Comparable> &vec, int  low, int  high){
     stack< int > st;
     if (low<high){
         int  mid=partition(vec,low,high);
         if (low<mid-1){
             st.push(low);
             st.push(mid-1);
         }
         if (mid+1<high){
             st.push(mid+1);
             st.push(high);
         }
         //其实就是用栈保存每一个待排序子串的首尾元素下标,下一次while循环时取出这个范围,对这段子序列进行partition操作
         while (!st.empty()){
             int  q=st.top();
             st.pop();
             int  p=st.top();
             st.pop();
             mid=partition(vec,p,q);
             if (p<mid-1){
                 st.push(p);
                 st.push(mid-1);
             }
             if (mid+1<q){
                 st.push(mid+1);
                 st.push(q);
             }      
         }
     }
}
 
int  main(){
     int  len=1000000;
     vector< int > vec;
     for ( int  i=0;i<len;i++)
         vec.push_back( rand ());
     clock_t  t1= clock ();
     quicksort1(vec,0,len-1);
     clock_t  t2= clock ();
     cout<< "recurcive  " <<1.0*(t2-t1)/CLOCKS_PER_SEC<<endl;
     
     //重新打乱顺序
     random_shuffle(vec.begin(),vec.end());
         
     t1= clock ();
     quicksort2(vec,0,len-1);
     t2= clock ();
     cout<< "none recurcive  " <<1.0*(t2-t1)/CLOCKS_PER_SEC<<endl;
     
     return  0;
}

orisun@zcypc:~g++quicksort.cppoqsorisun@zcypc:  ./qs
recurcive 0.38
none recurcive 0.47

可以看到非递归的算法比递归实现还要慢。下面解释为什么会这样。

递归算法使用的栈由程序自动产生,栈中包含:函数调用时的参数和函数中的局部变量。如果局部变量很多或者函数内部又调用了其他函数,则栈会很大。每次递归调用都要操作很大的栈,效率自然会下降。

而对于非递归算法,每次循环使用自己预先创建的栈,因此不管程序复杂度如何,都不会影响程序效率。

对于上面的快速排序,由于局部变量只有一个mid,栈很小,所以效率并不比非递归实现的低。

原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun

快速排序算法递归与非递归实现

分类: 数据结构   5618人阅读  评论(3)  收藏  举报

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归或者非递归进行,以此达到整个数据变成有序序列。

快速排序的递归算法:

   void qsort(int a[],int left,int right)

  {

       int pivot,l,r,temp;

      

       l = left;

       r = right;

       pivot = a[(left+right)/2]; //取中位值作为分界值

 

       while(l<r)

       {

          while(a[l] < pivot) ++l;

          while(a[r] > pivot) --r;

      

          if(l>=r) break;

 

          temp = a[l];

          a[l] = a[r];

          a[r] = temp;

          ++l;

           --r;

        }

       

         if(l==r) l++;

         if(left < r) qsort(a, left,l-1);

         if(l < right) qsort(a,r+1,right);

  }

 

快速排序的非递归算法
#include <iostream>
#include <stack>
using namespace std;
template <class T>
int partition(T a[],int low,int high)
{
 T v=a[low];
 while(low<high)
 {  
  while(low<high && a[high]>=v) high--;
  a[low]=a[high];
  while(low<high && a[low]<=v) low++;
  a[high]=a[low];
 }
 a[low]=v;
 return low;
 
}
 
template <class T>
void QuickSort(T a[],int p,int q)
{
 stack<int> st;
 int j;
 do{
      while(p<q)
      {
         j=partition(a,p,q);   
         if( (j-p)<(q-j) )
         {
            st.push(j+1);
            st.push(q);
            q=j-1;
         }
         else
         {
           st.push(p);
           st.push(j-1);
           p=j+1;
         }   
      }
  if(st.empty()) return;
  q=st.top();st.pop();  
  p=st.top();st.pop();  
  //cout<<endl<<"p:"<<p<<" ";
  //cout<<"q:"<<q<<endl;
 }while(1);
}

void main()
{
 //int a[7]={7,6,5,4,3,2,1};
 //int a[7]={1,2,3,4,5,6,7};
 int a[7]={3,5,2,3,66,225,1};
 for(int i=0;i<7;i++)
  cout<<a[i]<<" ";
 QuickSort(a,0,6);
 cout<<endl;
 for(int i=0;i<7;i++)
  cout<<a[i]<<" ";
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值