动态规划之最长公共子序列

题意:

给出两个字符串X,Y。求出X,Y两个字符串的最长公共子序列长度。

这算是动归的入门题了,但是需要考虑好思路。

状态表示

dp [i][j]表示串 X 的前 i 个字符和串 Y 的前 j 个字符的最长公共子序列长度。

转移方程

我们的思路是这样的:用变量 i 代表遍历到了 X 的哪个字符,变量 j 代表遍历到了 Y 的哪个字符。如果 X[i] == Y[j] ,那么我们就把这个字符加到子序列中继续判断,如果X[i] != Y[j],我们就延续上个状态中最长的子序列,继续判断。举一个简单的例子:

abcf 与 abde

如果i==3,j==4.  我们判断 c != e  所以说abc与abde的最长公共子序列应该等于  ab与abde的公共子序列和ab 与 abd公共子序列中最长的一个。

假设我们现在遍历到了串 X 的第 i 个字符,串 Y 的第 j 个字符,那么我们就已经知道了 X 的前i-1个字符与 Y 的前 j-1 个字符的最长公共子序列长度。那么当前共有两种结果:

1. X 的 第 i 个字符与 Y 的第 j 个字符相等

f [i][j] = f[i-1][j-1]+1

2. X 的 第 i 个字符与 Y 的第 j 个字符不相等

f [i][j] = max(f [i-1][j], f[i][j-1])

#include<iostream>
#include<cstring>
using namespace std;
const int MAXN=1001;
char str1[MAXN],str2[MAXN];
int dp[MAXN][MAXN];
int main()
{
	while(scanf("%s",str1+1)!=EOF)
	{
		scanf("%s",str2+1);
		memset(dp,0,sizeof(dp));
		int l1=strlen(str1+1),l2=strlen(str2+1);
		for(int i=1;i<=l1;i++)
			for(int j=1;j<=l2;j++)
			{
				if(str1[i]==str2[j]) dp[i][j]=dp[i-1][j-1]+1;
				else dp[i][j]=max(dp[i-1][j],dp[i][j-1]); 
			}
		cout<<dp[l1][l2]<<endl;
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值