1. 分布式系统单点故障处理:
non-sharded, stateless 类型服务非常容易解决单点故障。通常load balancer可以按照固定的时间间隔,去health check每个node,当某一个node出现故障时,load balancer可以把故障的node从pool中排除。
很多服务的healthcheck设计成简单的TCP connect, 或者用HTTPGET的方式,去ping一个特定的endpoint。当业务逻辑比较复杂时,可能业务endpoint故障,但是healthendpoint还能正常返回,导致load balancer无法发现单点故障,这种情况可以考虑在health checkendpoint中增加简单的业务逻辑判断。
对于短时间的network故障,可能会导致这段时间很多RPCcall failures。 在RPC client端通常会实现backoff retry。 failure可能有几种原因:
- TCP connect fail,这种情况下retry不会影响业务逻辑,因为Handler还没有执行。
- receive timeout, client无法确定handler是不是已经收到了request 而且处理了request,如果handler重复执行会产生side effect,比如database write或者访问其他的service, client retry可能会影响业务逻辑。
对于sharded service,关键是如何找到故障点,而且将更新的membership同步到所有的nodes。下面讨论几种sharding的方案:
- 将key space hash到很多个小的shard space, 比如4K个shards。 通过zookeeper (distributed mutex) 选出一个master,来将shard分配到node上,而且health check每一个node。当遇到单点故障时,将已经assigned的shards转移到其他的nodes上。 因为全局只有一个single master, 从而保证了shard map的全局一致。当master故障时,其他的backup node会获得lock成为Master
- Consistent hashing方式。consistent hashing 通常用来实现cache cluster,不保证一致性。 因为每个client会独立health check每一个node, 同时更新局部的membership。 在network partition的情况或者某一个node不停的重启, 很可能不同的client上的membership不一致,从而将相同的key写在了不同的node上。 当一致性的需求提高时,需要collaborative health check, 即每个node要monitor所有其他node的health。 Uber在这里使用的是gossip protocol,node之间交换health check的信息。
2. 大面积故障处理:
大面积故障时,比如交换机故障(rackswitch failure),可用的机器不足以处理所有的请求。 我们尽可能做的就是用50%的capacity处理50%的请求或者50%用户的所有请求。而尽量避免整个服务故障。 当设计一个服务的时候,它的throughput应该是可linear scale的。
- 在同样的CPU占用情况下,1个机器应该处理100个请求,那么5个机器应该可以处理500个请求。
- 而且在同样的机器数量下,20%的CPU可以处理200个请求,那么60%的CPU应该可以处理3倍即600个请求。
后者是很难实现的,而且当CPU越高的时候,服务的throughput并不是线性的。通常在80%CPU以上的情况,throughput会下降非常快。 随着CPU使用增加,request的latency也会提高。这对上下游的服务可能都是一个挑战,可能会导致cascade failure。
对于nodejs或者javanio一类的async IO框架来说,另外一个问题就是event loop lag。 这两者可能导致connection数量增加。下面举两个例子
- 有些RPC transport支持pipelining但不支持multiplexing (out of order responses), pipelining是指在同一个TCP连接上可以连续发出Req1, Req2, Req3, Response1, Response2, Response3,即Response的顺序必须和Request的顺序是一致。Req1如果需要很长时间,Req2和3就都不能返回。一个Request如果占用太长时间,会导致后面的很多个Request timeout。RPC client通常也会限制在一个TCP connection上面的max pending requests。但timeout发生,或者max pending requests情况下,client会主动创建新的connection。
- event loop lag 是指程序占用太长时间执行连续的CPU intensive任务。 只有当任务结束时,event loop才会handle IO events,比如从socket上面读数据。否则收到的数据只能保存在kernel 的TCP buffer里,通常这个buffer size小于64KB。当buffer满时(而且service又很长时间没有读buffer),socket的远端就不能发送更多的数据。这时也会导致远端的transport error。同样的,client会主动创建新的connection,当connection增加到预设的fd limit时,service就不能继续accept新的TCP connection了,其实是不能open新的文件了。而且,绝大部分的程序没有测试过达到fd limit的场景。很多API需要open file, 比如logging和core dump. 所以,一旦达到fd limit, 就像out of memory一样,将很难recover,只能crash process. 而这时正是过载的时候,重启实际上减少了capacity。 任何crash在过载的情况下只会更糟。facebook在这防止过载上做的很好,在C++实现的thrift server上,有一个或者多个threads只负责accept TCP connections. 你可以指定最多的connections for thrift calls。 这个connection limit是远小于fd limit, 当connection太多时,thrift server可以fail fast。所以,这种情况下可以让service能一直保持在max qps。
3. 整个数据中心故障处理:
在Uber的场景中,如果rider已经在一个trip上了,我们通产会等trip结束后才把rider迁移到其他的数据中心,我们叫做soft failover。否则需要hardfailover,我们会把DNS指向其他的数据中心。而且用户的DNS服务器很可能在一段时间内还是cache以前的ip,而且这个cache的时间是基本没办法控制的,所以我们会在loadbalancer上返回HTTP redirect,这样手机的客户端收到后会立即转向新的备份数据中心。
惊群问题(thundering herd),很多服务在provision的时候根据平常的QPS预留了很少的容量空间,当数据中心或者loadbalancer重启的时候,如果所有的客户端同时发起请求,这时的QPS可以是平时的很多倍。很可能导致大部分请求都失败。一方面需要在客户端实现exponential backoff,即请求失败后retry的间隔时间是增长的,比如1秒,5秒,20秒等等。另外在load balancer上实现rate limiting或者globalblackhole switch, 后者可以有效的丢掉一部分请求而避免过载,同时尽早触发客户端的backoff逻辑。
如果大家用AWS或者其他云服务的话,AWS的一个region通常包括几个数据中心。各个数据中心甚至在相邻的介个城市,有独立的空调系统和供电。
数据中心之间有独立的网络 highthroughput low latency, 但是在region之间的网络通常是共有的 high throughput high lantecy
整个region挂掉很少发生。可以把服务部署在多个可用区(AvailabilityZone)来保证高可用性。