tensorboard的histogram数据解读

这篇博客探讨了TensorBoard中histogram的表示方法,解释了TensorFlow如何使用指数分布创建非均匀的bins,以及这可能导致的可视化问题。文章提到,尽管这种分布有利于处理大型稀疏数据集,但它可能导致直方图的形状失真。为了解决这个问题,TensorBoard通过重采样数据到均匀bins来改善直方图的可读性。案例分析了一维向量在直方图中的表现形式:0附近的bin较窄且高,远离0的bin较宽且矮。
摘要由CSDN通过智能技术生成

仔细研究了一下tensorboard的直方图表示

参考文献, 官方文档:https://www.tensorflow.org/get_started/tensorboard_histograms

import tensorflow as tf

k = tf.placeholder(tf.float32)

# Make a normal distribution, with a shifting mean
mean_moving_normal = tf.random_normal(shape=[1000], mean=(5*k), stddev=1)
# Record that distribution into a histogram summary
tf.summary.histogram("normal/moving_mean", mean_moving_normal)

# Setup a session and summary writer
sess = tf.Session()
writer = tf.summary.FileWriter("/tmp/histogram_example")

summaries = tf.summary.merge_all()

# Setup a loop and write the summaries to disk
N = 400
for step in range(N):
  k_val = step/float(N)
  summ = sess.run(summaries, feed_dict={k: k_val})
  writer.add_summary(summ, global_step=step)

在google官方文档中,变量mean_moving_normal是一个以5k为中心,dev=1的正太分布的抽样,包含1000个样本, 

tf.summary.histogram函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值