李宏毅GAN笔记二theory behiind GAN

1.Maximum Likelihood Estimation= Minimize KL Divergence

在这里插入图片描述
使每个真实抽样的livelihood最大,等价于乘积最大。
加上log转化为累加问题,再转化为期望。在这里插入图片描述
arg max,加上最后一项不影响求解。= 𝑎𝑟𝑔 min𝜃𝐾𝐿( 𝑃𝑑𝑎𝑡𝑎||𝑃G)

2. Discriminator

我们用神经网络(Discriminator)求解min Div。
其目标式:
在这里插入图片描述
求解该目标式
在这里插入图片描述
求导
在这里插入图片描述
转换为JS散度在这里插入图片描述在这里插入图片描述
可得,arg maxV(G,D)相当于求解JS散度值(等效于KL Div)

3.compute the KL divergence

欲求KL Div最小值,G可求JS Div ,两者可视为等效。因此我们可以将其用于目标式中。在这里插入图片描述
训练时fix一个,update另一个。G求最小值时,D已训练完毕,maxV(G,D)=L(G)。通过gradien decent即可求解。

4.实操算法

在这里插入图片描述
prior 什么分布都行。
D训练k次,(尽可能多),找到全局最大解,否则容易陷入局部最优。实操中,达不到收敛。所以,无法计算expectation,只能通过样本进行估计。
而G训练一次,是为了防止训多了JS距离偏差过大。

5.问题及改进

1.JS距离偏差问题
对D,最大化V=求解JS Div;但对G,最小化V则不是。
可通过限制训练次数解决。
2.训练速度问题
在这里插入图片描述
D(x)初始值应在0左右,而此时𝑙𝑜𝑔 1 − 𝐷 (x)变化平缓,阻碍D(x)快速更新。
把𝑙𝑜𝑔 1 − 𝐷 (x)换为𝑙𝑜𝑔 D(x)。
实际GAN学到的只是近似分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值