机器学习
文章平均质量分 72
「已注销」
这个作者很懒,什么都没留下…
展开
-
简单线性回归算法
一 线性回归算法特点解决回归问题思想简单,实现容易许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想二 简单线性回归算法 寻找一条直线,最大程度的“拟合”样本特征和样本输出标记之间的关系 样本特征只有一个,成为简单线性回归 接下来,就是想使预测值与真值之间的差值越小,一般都会想到两种方式,相减,但假若a样本预测的差值为正100,b样本预测的差值为-10原创 2017-12-27 21:16:47 · 7678 阅读 · 0 评论 -
多元线性回归算法
概念在简单的线性回归算法基础上,若x代表的不是一个单一的数值,而是一个向量,下面给出张PPT图 如图所示,在多元线性回归算法中,x已成了一个向量,自然y的表达式已经不再是之前简单的一元二次方程,而我们所需要求得的预测误差也如下所示: 同简单线性回归一样,只不过就是一维运算换成了向量运算。为了使得损失函数最小,接下来,我们来简化下预测值y 为了匹配成矩阵相乘的形式,从上图我们可以看出原创 2017-12-28 14:46:25 · 2206 阅读 · 0 评论