
MIT Technology Review - Apple Siri
这是 MIT Technology Review 12月11日的 Newsletter 的部分摘录,大概意思是,iPhone 上的 Siri 在听到我们个人说 "Hey Siri" 时有反应,但是对其他人说的都没有反应,按理来说,训练一个这种模型,会需要收集我们大量的声音数据,并且这些数据都会保存在苹果,但苹果并没有这么做,那它是怎么做到的呢?这就说到了今天的主角,联邦学习 (Federated Learning)。
什么是联邦学习?
联邦学习是一种训练数据去中心化的机器学习训练方式,最早在2016年由谷歌提出,目的是通过对保存在大量终端的分布式数据展开训练学习,最终汇总得到一个高质量的中心化机器学习模型。
在苹果 Siri 的例子上,每台手机都是一个终端设备,我们的音频信息都只保存在自己的手机上,苹果通过联邦学习的方式,用我们每个人的音频都训练得到了一个本地模型,然后再整合成一个统一的模型。通过这中方式,既能得到定制化