马拦过河卒
Time Limit: 3000 ms
Memory Limit: 65536 KiB
Problem Description
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。棋盘用坐标表示,A点(0,0)、B点(n,m)(n,m为不超过15的整数),同样马的位置坐标是需要给出的。现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
Input
一行四个数据,用空格分隔,分别表示B点的坐标和马的坐标。
Output
一个数据,表示所有的路径条数。
Sample Input
6 6 3 3
Sample Output
6
#include <stdio.h>
#include <stdlib.h>
int main()
{
int n,m,i,j,a,b,k;
scanf("%d %d %d %d",&n,&m,&a,&b);
long long int f[16][16];
int dx[9] = {0,-2,-1,1,2,2,1,-1,-2};
int dy[9] = {0,1,2,2,1,-1,-2,-2,-1};
for(i=0; i<=n; i++){
f[i][0]=1;
for(k=0;k<=8;k++){
if(a+dx[k]>=0&&a+dx[k]<=n&&b+dy[k]>=0&&b+dy[k]<=m&&i==a+dx[k]&&0==b+dy[k])
{
for( ;i<=n; i++){
f[i][0]=0;
}
}
}
}
for(j=0; j<=m; j++){
f[0][j]=1;
for(k=0;k<=8;k++){
if(a+dx[k]>=0&&a+dx[k]<=n&&b+dy[k]>=0&&b+dy[k]<=m&&0==a+dx[k]&&j==b+dy[k])
{
for( ; j<=m; j++){
f[0][j]=0;
}
}
}
}
f[0][0]=1;
for(i=1; i<=n; i++){
for(j=1; j<=m; j++){
f[i][j]=f[i-1][j]+f[i][j-1];
for(k=0;k<=8;k++){
if(a+dx[k]>=0&&a+dx[k]<=n&&b+dy[k]>=0&&b+dy[k]<=m&&i==a+dx[k]&&j==b+dy[k])
{
f[i][j]=0;
}
}
}
}
printf("%lld\n",f[n][m]);
return 0;
}