A. Perfect Permutation
time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output
A permutation is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Let's denote the i-th element of permutation p as pi. We'll call number n the size of permutation p1, p2, ..., pn.
Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation p that for any i (1 ≤ i ≤ n) (n is the permutation size) the following equations hold ppi = i and pi ≠ i. Nickolas asks you to print any perfect permutation of size n for the given n.
Input
A single line contains a single integer n (1 ≤ n ≤ 100) — the permutation size.
Output
If a perfect permutation of size n doesn't exist, print a single integer -1. Otherwise print n distinct integers from 1 to n, p1, p2, ..., pn — permutation p, that is perfect. Separate printed numbers by whitespaces.
Examples
input
1
output
-1
input
2
output
2 1
input
4
output
2 1 4 3
- 关键是两个公式:ppi = i and pi ≠ i.;把奇偶两位互换即可,当然n得是偶数;
-
#include <iostream> using namespace std; int main() { int n; cin >> n; if( n % 2 == 1 ) { cout << -1 <<endl; } else { int i, a[101]; for( i=1; i<=n; i++ ) { if( i % 2 == 1 ) { a[i] = i + 1; } else { a[i] = i - 1; } } for( i=1; i<n; i++ ) { cout << a[i] << " "; } cout << a[i] << endl; } return 0; }