CodeCops
码龄21年
关注
提问 私信
  • 博客:50,396
    问答:620
    51,016
    总访问量
  • 13
    原创
  • 1,603,152
    排名
  • 9
    粉丝
  • 0
    铁粉

个人简介:Humachine is the ultimate shape of human beings.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2004-09-28
博客简介:

机器学习只有配合人脑才能快速投入实战

博客描述:
IT doesn't matter
查看详细资料
个人成就
  • 获得8次点赞
  • 内容获得1次评论
  • 获得25次收藏
创作历程
  • 22篇
    2016年
成就勋章
TA的专栏
  • 预测
    4篇
  • 创造
  • 认知计算
    8篇
  • 数学
    1篇
  • NLP
    3篇
  • python
    6篇
  • 数据挖掘
    4篇
  • Tips
    1篇
  • 深度学习
    1篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

474人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MacbookPro OS X EI Captain下编译Chrome源代码

这是一个老话题了,但是我重新来出来是因为一个重要的原因。浏览器是互联网客户端的全部意义,在机器学习的大背景下,如果用机器去互联网冲浪,最好的办法就是改造一个浏览器,深度定制Chrome是一个最好的选择,毕竟tensorflow也是谷歌家的。
原创
发布博客 2016.08.28 ·
846 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度机器学习的能力模型

简书首发,这里重发。请注意一下题目,我在这里谈论的范畴是深度机器学习,换句话说,线性回归(LR),逻辑回归(LR),支持向量机(SVM),K-Means,决策树(DT),随机森林(RT),主成分分析(PCA)等等机器学习并不在这个讨论之列,只有以仿真动物脑神经结构的卷积神经网络(CNN),循环神经网络(RNN),全连接神经网络(FCN)以及它们之间各种组合,变种在此讨论之列,这是个非常
原创
发布博客 2016.12.09 ·
665 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

人工智能新解

首发在简书人工智能新解,这里重发。风口里的猪说,如今创业不谈人工智能如同当年创业一定要谈互联网一样。但是人工智能的引入成本高昂,不是谁都承担得起。你看,传统定义下的人工智能包含了计算机视觉,声音处理,传感器处理,自然语言处理,知识处理(知识表征,推理引擎,机器学习,专家系统等),哪一个方面都是需要高超算法和软硬件人才,还要加上昂贵的运算力。而现在普遍认为机器学习的主力方向,深度学习,C
原创
发布博客 2016.12.09 ·
446 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Tensorflow之旅

第一部分第二部分第三部分第四部分第五部分这是我最近翻译的一篇论文。最近,我在照猫画虎一个基于CNN的文本分类器时候,然后卡在训练好模型之后的推断上,所以找一篇论文来翻译,顺便理顺一下思路,最先发在简书了,由于太长,这里只放链接了。
翻译
发布博客 2016.12.09 ·
492 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

文本数据的机器学习自动分类方法(下)

原文链接:http://www.infoq.com/cn/articles/machine-learning-automatic-classification-of-text-data-part2编者按】:随着互联网技术的迅速发展与普及,如何对浩如烟海的数据进行分类、组织和管理,已经成为一个具有重要用途的研究课题。而在这些数据中,文本数据又是数量最大的一类。以统计理论为基础,利用机
转载
发布博客 2016.11.25 ·
1133 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

文本数据的机器学习自动分类方法(上)

原文链接:http://www.infoq.com/cn/articles/machine-learning-automatic-classification-of-text-data 编者按】:随着互联网技术的迅速发展与普及,如何对浩如烟海的数据进行分类、组织和管理,已经成为一个具有重要用途的研究课题。而在这些数据中,文本数据又是数量最大的一类。以统计理论为基础,利用机器学习算法
转载
发布博客 2016.11.25 ·
1125 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

学习《Automatic Text Categorization by Unsupervised Learning》笔记

目前主流的文本分类都是通过一些预先定义好的打标数据来对新文本进行分类。而且,文本分类的精确程度,往往是取决于打标数据的多少和分类质量。这就有点鸡生蛋,蛋生鸡的味道了。要是我们话费巨量时间去打标数据,还需要机器干嘛。更多时候,我们的数据可能还很奇怪,打标的分类并不是均衡的,生成打标数据很有困难。这篇Ko Young Joong和Seo Jung Yun合写的文章正是针对这个困难,提出了一种他们认为比
原创
发布博客 2016.11.17 ·
491 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

主流深度学习框架对比:看你最适合哪一款?

选自deeplearning4j.org机器之心编译作者:Aäron van den Oord、Heiga Zen、Sander Dieleman参与:吴攀、李亚洲目录Theano & EcosystemTorchTensorflowCaffeCNTKDSSTNESpeedDL4J: Why the JVM?DL4S: Deep Learning in Scal
转载
发布博客 2016.09.14 ·
3573 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

对于新加坡寨卡病毒传播的预测(2016.9.9)

我希望能够通过收集到的公共信息和使用计算机分析来预测寨卡病毒未来在新加坡的传播和发展情况。本文只是我玩预测的一个练习,对于结果不负任何责任。
原创
发布博客 2016.09.09 ·
725 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

菲利普-泰特洛克的超预测速成课程(如何玩预测)

原文在这里:点击打开链接Philip Tetlock(菲利普 泰特洛克)是超预测创始人,也是本课程的讲师。“如果简单的通过度量能够提高预测的结果和能力,那么为什么不把度量作为一种标准实践呢?这个问题的答案很大程度是在心理上让我们相信我们可以知道我们不知道的事物。几个世界以来,它阻碍了医学的进步。当医生承认他们的经验和判断对于病情的诊断是不可靠的时候,他们才转而使用科学实验,从而快速
翻译
发布博客 2016.09.07 ·
718 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

菲利普-泰特洛克的超预测速成课程(目录)

原文链接:点击打开链接欢迎来到超预测速成课程,它服务于 GJOpen™ Forecasting Tournament.课程模块如何玩预测?预测计分的详细规则  速成课程第一课:关于评估预测准确度的那些事第二课:那些不必要对立争论背后的思维第三课:反常的历史
翻译
发布博客 2016.09.07 ·
590 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2016-09-06 预测的艺术

预测从理论上不可能100%,除非有穿越时间的能力,但是可以无限接近正确的答案。因此,预测的度量往往在于单次预测的准确度和多次预测的准确度的稳定性。预测的准确度的实际意义并不大,因为在多次预测这种对于实际应用的场景下,预测的稳定性更能够凸显已有信息和预测结果之间的关联关系已经被揭示。所以,追求预测的稳定性要比单纯的追求预测的准确性更有实际价值。预测的行为要注重准确度的稳定,而预测的对象也
原创
发布博客 2016.09.06 ·
409 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

tensorflow的OS X构建机器学习环境

因为tensorflow的模型越来越丰富,发展越来越迅速,所以有必要搭建这样的实验环境。1. 首先需要把tensorflow的代码下载下来。git clone https://github.com/tensorflow/tensorflow2. 保证安装bazel和SWIG。brew install bazel swig3. 配置安装脚本,确认python版本和路径,是
原创
发布博客 2016.09.04 ·
533 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于初学深度学习还没被说烂的事情

这是一篇在图灵机器人看到的文章,我觉得和我自己的感受高度相似,所以转载过来,不管你信不信,我不是拷贝和粘贴过来,而是一个字一个字的输入的,因为我觉得细细品味一遍是很有必要的,同时我也纠正了原文中的错字和一些我认为错误的术语。作者:头条号 / 图灵机器人链接:http://toutiao.com/a6324441583286862081/来源:头条号(今日头条旗下创作平台)著作权
转载
发布博客 2016.09.01 ·
1275 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Django在OS X下的编程实战(四)-构建社交网站

Django的优势在于构建很多整套应用的数据模型,显示模版和响应事件能力,这一次我们来体会一下社交网站。如果大家看了之前的文章,就知道我们需要通过虾面的命令创建一个社交网站项目。在settings.py里面的INSTALLED_APPS部分增加account。source activate myenvmkdir bookmarksdjango-admin startproj
原创
发布博客 2016.08.31 ·
687 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

请教一个业务逻辑怎么设计,有人回答么?

答:

如果作为业务设计,那么需要明确业务目标,根据你的说法,你需要在跟随温度变化及时采样来进一步控制档位和防止频繁档位变化损害电机之间取得平衡。
如果是我,我会这样设计:

  1. 逻辑的输入:温度
  2. 逻辑的输出:经过矫正的温度,下一次温度采样间隔
  3. 逻辑分支A:输入的温度经过温度和档位映射表匹配知道是否需要切换档位,如果不需要切换档位,输出本档位的标准参考温度,确保不会激活硬件去切换档位
  4. 逻辑分支B:输入的温度经过温度和档位映射表匹配知道是否需要切换档位,如果需要切换档位,计算上一次切换档位到现在的时间间隔,然后对比电机安全切换频率,决定输出不触发切换档位的温度,还是触发切换档位的温度
  5. A和B逻辑汇总:A或者B逻辑执行之后,把当前温度加入之前纪录历史温度系列做求导,判断温度变化趋势是向缓还是走急,确定下一次温度采样间隔。

如果不考虑你是嵌入式系统,可以在一个大后台运行很庞大的程序,可以使用隐形马尔科夫模型(HMM),使用采样温度在时间上的变化,预测性切换档位,包括容忍一些小幅温度的抖动而减少频繁档位切换,等等更智能的功能。

回答问题 2016.08.30

请问如此设计是否合理

答:

回答问题之前,我想先问两个问题:
1. 继承的目的是什么?
2. 接口设计的目的是什么?

如果设计的结果变得如此纠结,那么是不是设计的时候考虑不周。因为你并没有给出具体类的说明和关系,所以我只能猜测:
1. A和B的继承关系,意味着相同的类类型,不同的类实现,或者有类扩展。
2. 实现接口IC,意味着某功能需要以基于面的方式暴露在外。
有这个两个前提,还出现B中间要调用实现IIC的函数,这就不应该了。没有具体的信息,我也只能说这么多了,也许你真有不得已的地方或者历史代码的约束,这些我都不得而知。

回答问题 2016.08.30

Django在OS X下的编程实战(三)-构建博客的高级功能

在之前的两篇文章Django在OS X下的编程实战(一)构建一个博客系统和Django在OS X下的编程实战(二)操作博客数据模型主要利用Django的应用模版很快的构建了一个博客系统,大部分都是使用的模版内生的功能。这一篇主要开始大规模定制模版,实现更高级和定制化的功能。使用电子邮件分享博客文章。根据各种博客的共同特征,这个功能要实现包涵了
原创
发布博客 2016.08.29 ·
882 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Django在OS X下的编程实战(二)操作博客数据模型

第一篇最后想略过的部分,被很多人追着问,我反复解释还不如写出来。顺着上次的博客系统和数据模型继续写。这一篇的主题就是针对数据模型进行操作。
原创
发布博客 2016.08.26 ·
1112 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

如何自学成为“数据挖掘”的高手

对比我自己过去两年的学习和实践,我自己觉得不一定要全部看完入门,完全可以在某一个方向上面深入,包括一些数学知识,也是遇到了就去看,所以一些看上去很简单的算法和饮用,可能要花很长时间才能读通。可是,你第二次再遇到类似的算法,你就会很快领会。如果你是菜鸟:1.读书学习:a.《Introduction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的
转载
发布博客 2016.08.26 ·
695 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多