华院论文 | 基于自编码卷积神经网络的图像去噪算法

本文提出一种新的自编码卷积神经网络图像去噪算法,通过改变卷积层激活函数、优化跳跃连接和学习率,减少了网络层数,实现了更快的训练和测试时间,同时提高了峰值信噪比。与现有方法相比,新模型在保持良好去噪效果的同时,结构更为简洁。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘要】为了实现更高效的图像去噪,提出一种新的自编码卷积神经网络图像去噪算法。新算法改变了卷积层的激活函数和整个网络跳跃连接的方式,并在学习率的选取上有了一定改进。新模型结构设计简单,卷积网络层数更少。数值实验表明,新模型比原模型运行时间更少、视觉效果更好、峰值信噪比更大。

关键词:图像去噪、卷积神经网络、人工智能、机器学习

中图分类号:TP391.4    文献标志码:A 

文章编号:1674-232X(2021) 01-0095-07

作者:杜渺勇1,于祥雨2,周浩1,韩丹夫1

近年来,深度学习在实际问题处理中发挥了巨大作用。从医学、视觉心理学,再到安全检查、数字通信技术等,图像能够帮助人类观察对象,并为之采取正确的行动【1】。传统上,已经有许多经典的图像处理方法,例如滤波方法、偏微分方程方法和小波分析方法等【2】。随着大数据和人工智能领域的发展,图像数据规模呈指数型增长,如何将图像处理与深度学习相结合是研究者们的关注热点【3-5】。

图像复原是计算机视觉处理的一个经典问题【6-7】。简而言之,图像复原就是将一张损坏的图像恢复成它的原始状态。目前,深度神经网络展现了它在图像处理方面优良的性能,包括图像复原、图像分类和语义分割等。

Jain和Seung在2007年首先提出了深度神经网络的图像去噪方法【8】。他们在训练神经网络时采取了逐层训练的方法,使网络更加快速地收敛。文献【9】提出堆叠稀疏去噪自编码去噪器,并将其用于图像的去噪和复原工作,但是其网络层数较浅。文献【10】提出了一种新的自编码卷积神经网络的框架,但是由于有维度收缩和维度放大等操作,图像的细节信息容易被破坏。文献【11】根据细胞神经网络(cellular neural networks, CNN)处理图像的优良性能,提出了更深层次的卷积神经网络框架。这个框架不需要使用图像的先验信息,而是直接以端到端的方式学习,并且使用了卷积与反卷积映射。由于深层网络难以训练,这个框架也引入了多层跳跃连接,进而获得较好的去噪效果。

1. 卷积自动编码器的模型介绍

堆叠自编码神经网络是最初的用于图像去噪的深度神经网络【7】,它通过一次只对一层进行无监督的预训练,来最小化相对于输入的重构误差。一旦所有层都经过了预训练之后,网络就会进入微调阶段。Xie等结合稀疏编码和自编码深度神经网络【9】,提出了新的网络用于图像去噪和图像复原等任务。其主要思想是提出了正则化的稀疏诱导项,以提高网络的性能。深度级联网络(deep cascade network, DNC)是一种用于图像超分辨率的多层协同局部自动编码网络【12】。它将纹理高频增强后的图像块输入到网络中,来抑制噪声,并协调重叠部分的相容性。Dong等提出了对称的自编码网络,并且增加跳跃连接【11】。

本文通过改进文献【11】的激活函数、跳跃连接和学习率,只需要更少的隐藏层就能达到文献【11】的去噪效果,并且训练时间和测试时间均有所减少。与文献【11】相比,本文在原有神经网络结构上还引入加权系数的思想,即跳跃连接不是直接将卷积层与反卷积层相加,而是在卷积层和反卷积层之前添加权重系数,实验结果显示峰值信噪比也有所增高。

2. 新的方法

2.1 模型综述

图像去噪是对含有噪声的图像进行处理,并估计原始图像的过程.这个问题可以被描述为

                      Y(i , j)= X(i , j)+η(i , j) ,     (1)

其中,Y(i , j)表示噪声图像,X(i , j)表示原始图像,η(i , j)表示加性噪声。原始图像在加性噪声的干扰下,退化为噪声图像。由此,图像去噪的过程也可以表述为获得原始图像估计值F(i , j)的过程。X(i , j)和F(i , j)的偏差越小,图像去噪效果越好。

本文将均方误差作为损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值