拓展欧几里得算法小总结



对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然
存在整数对 x,y ,使得 gcd(a,b)=ax+by。

求解 x,y的方法的理解
设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,a>b>0 时
设 ax1+ by1= gcd(a,b);
bx2+ (a mod b)y2= gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b) = gcd(b,a mod b);
则:ax1+ by1= bx2+ (a mod b)y2;
即:ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2;
也就是ax1+ by1 == ay2+ b(x2- [a / b] *y2);
根据恒等定理得:
x1=y2
y1=x2- [a / b] *y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

以特解 x0 和 y0 表示出整个不定方程的通解:

        x = x0 + (b/gcd)*t

        y = y0 – (a/gcd)*t





代码:

#include<stdio.h>
int exgcd(int a,int b,int &x,int &y)//引用传值 
{
	if(b==0)
	{
		x=1;y=0;
		return a;
	}
	//y=内层的x减掉a/b*y(内层y), x=内层的y
	int d=exgcd(b,a%b,y,x);
	//内层的y已经赋给了x。
	//内层的x已经赋给了y。
	y=y-a/b*x;
	return d;
}
int main()
{
	int a,b,x,y;
	while(~scanf("%d%d",&a,&b))
	{
		int d=exgcd(a,b,x,y);//得到了一组特解 
		printf("%d*a + %d*b = gcd(a,b) = %d\n",x,y,d);
	}
	return 0;
}


Python版代码:

def gcd(a,b):
    if(b==0):return a,1,0;
    d,y,x=gcd(b,a%b)
    return d,x,y-a//b*x

a=int(input())
b=int(input())
d,x,y=gcd(a,b)
print("gcd=",d)
print(x,y)



练习题及讲解:http://blog.csdn.net/winter2121/article/details/71123565

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雪的期许

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值