Dstream输出

DStream通常将数据输出到,外部数据库屏幕上

DStream与RDD中的惰性求值类似,如果一个DStream及其派生出的DStream都没有被执行输出操作,那么这些DStream就都不会被求值。如果StreamingContext中没有设定输出操作,整个Context就都不会启动。

1)输出操作API如下:

  • saveAsTextFiles(prefix, [suffix]):以text文件形式存储这个DStream的内容。每一批次的存储文件名基于参数中的prefix和suffix。“prefix-Time_IN_MS[.suffix]”。

注意:以上操作都是每一批次写出一次,会产生大量小文件,在生产环境,很少使用。

  • print():在运行流程序的驱动结点上打印DStream中每一批次数据的最开始10个元素。这用于开发和调试。
  • foreachRDD(func):这是最通用的输出操作,即将函数func用于产生DStream的每一个RDD。其中参数传入的函数func应该实现将每一个RDD中数据推送到外部系统,如将RDD存入文件或者写入数据库

在企业开发中通常采用foreachRDD(),它用来对DStream中的RDD进行任意计算。这和transform()有些类似,都可以让我们访问任意RDD。在foreachRDD()中,可以重用我们在Spark中实现的所有行动操作(action算子)。比如,常见的用例之一是把数据写到如MySQL的外部数据库中

package com.atguigu;

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.function.FlatMapFunction;

import org.apache.spark.api.java.function.Function2;

import org.apache.spark.api.java.function.PairFunction;

import org.apache.spark.api.java.function.VoidFunction;

import org.apache.spark.streaming.Duration;

import org.apache.spark.streaming.api.java.JavaDStream;

import org.apache.spark.streaming.api.java.JavaInputDStream;

import org.apache.spark.streaming.api.java.JavaPairDStream;

import org.apache.spark.streaming.api.java.JavaStreamingContext;

import org.apache.spark.streaming.kafka010.ConsumerStrategies;

import org.apache.spark.streaming.kafka010.KafkaUtils;

import org.apache.spark.streaming.kafka010.LocationStrategies;

import scala.Tuple2;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.HashMap;

import java.util.Iterator;

/**

 * @author yhm

 * @create 2022-09-01 16:47

 */

public class Test04_Save {

    public static void main(String[] args) throws InterruptedException {

        // 创建流环境

        JavaStreamingContext javaStreamingContext = new JavaStreamingContext("local[*]", "window", Duration.apply(3000L));

        // 创建配置参数

        HashMap<String, Object> map = new HashMap<>();

        map.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092,hadoop104:9092");

        map.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        map.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        map.put(ConsumerConfig.GROUP_ID_CONFIG,"atguigu");

        map.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");

        // 需要消费的主题

        ArrayList<String> strings = new ArrayList<>();

        strings.add("topicA");

        JavaInputDStream<ConsumerRecord<String, String>> directStream = KafkaUtils.createDirectStream(javaStreamingContext, LocationStrategies.PreferBrokers(), ConsumerStrategies.<String, String>Subscribe(strings,map));

        JavaDStream<String> stringJavaDStream = directStream.flatMap(new FlatMapFunction<ConsumerRecord<String, String>, String>() {

            @Override

            public Iterator<String> call(ConsumerRecord<String, String> stringStringConsumerRecord) throws Exception {

                String[] split = stringStringConsumerRecord.value().split(" ");

                return Arrays.asList(split).iterator();

            }

        });

        JavaPairDStream<String, Integer> javaPairDStream = stringJavaDStream.mapToPair(new PairFunction<String, String, Integer>() {

            @Override

            public Tuple2<String, Integer> call(String s) throws Exception {

                return new Tuple2<>(s, 1);

            }

        });

        JavaPairDStream<String, Integer> resultDStream = javaPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {

            @Override

            public Integer call(Integer v1, Integer v2) throws Exception {

                return v1 + v2;

            }

        }, Duration.apply(12000L), Duration.apply(6000L));

        resultDStream.foreachRDD(new VoidFunction<JavaPairRDD<String, Integer>>() {

            @Override

            public void call(JavaPairRDD<String, Integer> stringIntegerJavaPairRDD) throws Exception {

                // 获取mysql连接

                // 写入到mysql

                // 关闭连接

            }

        });

        // 执行流的任务

        javaStreamingContext.start();

        javaStreamingContext.awaitTermination();

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

走过冬季

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值