DStream通常将数据输出到,外部数据库或屏幕上。
DStream与RDD中的惰性求值类似,如果一个DStream及其派生出的DStream都没有被执行输出操作,那么这些DStream就都不会被求值。如果StreamingContext中没有设定输出操作,整个Context就都不会启动。
1)输出操作API如下:
- saveAsTextFiles(prefix, [suffix]):以text文件形式存储这个DStream的内容。每一批次的存储文件名基于参数中的prefix和suffix。“prefix-Time_IN_MS[.suffix]”。
注意:以上操作都是每一批次写出一次,会产生大量小文件,在生产环境,很少使用。
- print():在运行流程序的驱动结点上打印DStream中每一批次数据的最开始10个元素。这用于开发和调试。
- foreachRDD(func):这是最通用的输出操作,即将函数func用于产生DStream的每一个RDD。其中参数传入的函数func应该实现将每一个RDD中数据推送到外部系统,如将RDD存入文件或者写入数据库。
在企业开发中通常采用foreachRDD(),它用来对DStream中的RDD进行任意计算。这和transform()有些类似,都可以让我们访问任意RDD。在foreachRDD()中,可以重用我们在Spark中实现的所有行动操作(action算子)。比如,常见的用例之一是把数据写到如MySQL的外部数据库中。
package com.atguigu;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import scala.Tuple2;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
/**
* @author yhm
* @create 2022-09-01 16:47
*/
public class Test04_Save {
public static void main(String[] args) throws InterruptedException {
// 创建流环境
JavaStreamingContext javaStreamingContext = new JavaStreamingContext("local[*]", "window", Duration.apply(3000L));
// 创建配置参数
HashMap<String, Object> map = new HashMap<>();
map.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092,hadoop104:9092");
map.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
map.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
map.put(ConsumerConfig.GROUP_ID_CONFIG,"atguigu");
map.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"latest");
// 需要消费的主题
ArrayList<String> strings = new ArrayList<>();
strings.add("topicA");
JavaInputDStream<ConsumerRecord<String, String>> directStream = KafkaUtils.createDirectStream(javaStreamingContext, LocationStrategies.PreferBrokers(), ConsumerStrategies.<String, String>Subscribe(strings,map));
JavaDStream<String> stringJavaDStream = directStream.flatMap(new FlatMapFunction<ConsumerRecord<String, String>, String>() {
@Override
public Iterator<String> call(ConsumerRecord<String, String> stringStringConsumerRecord) throws Exception {
String[] split = stringStringConsumerRecord.value().split(" ");
return Arrays.asList(split).iterator();
}
});
JavaPairDStream<String, Integer> javaPairDStream = stringJavaDStream.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<>(s, 1);
}
});
JavaPairDStream<String, Integer> resultDStream = javaPairDStream.reduceByKeyAndWindow(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}, Duration.apply(12000L), Duration.apply(6000L));
resultDStream.foreachRDD(new VoidFunction<JavaPairRDD<String, Integer>>() {
@Override
public void call(JavaPairRDD<String, Integer> stringIntegerJavaPairRDD) throws Exception {
// 获取mysql连接
// 写入到mysql中
// 关闭连接
}
});
// 执行流的任务
javaStreamingContext.start();
javaStreamingContext.awaitTermination();
}
}