今天看到有人问及如何在已知前序遍历和中序遍历结果的情况下,重构整个二叉树的问题,这里写出一个个人的解法。
首先,在讲解之前,我们先定义一种树的表示方法,这里以个人的方式给出一种: 根节点值(左节点标示,右节点表示)
据个例子,对于A为根节点,左节点B,右节点C的树来说,结果为A(B,C)
当然,如果B,C各自还有子节点,那么在原位置继续扩展标示。
接着,复习一下所谓的前序遍历,中序遍历,后续遍历:
其实,这三种方式记忆起来非常简单,只要记住一点,就是三种方式都是以“根节点为基准“来说的。
据个例子:
对于A(B,C)这样的树
前序遍历即根节点在前,结果为为ABC
中序遍历即根节点在中间, 结果为为BAC
后续遍历即根节点在最后,结果为BCA
PS:当然,对于子节点来说,永远都是先左右后。
可以看到,结果中,所谓的”前中后“都是对于根节点而言的。
具体遍历方法,都可以用递归的定义给出。这里以中序遍历据个例子:
1.如果有左节点,中序遍历左子节点
2.访问当前节点
3.如果有右节点,中序遍历右子节点
递归开始条件:当前节点为根节点
递归结束条件:访问到叶节点,即左节点和右节点均为空的节点。
言归正传,简单说一下如何解决题目的问题:
问题解决方式也就是利用结果的输出特点,我们分析一下前序遍历和中序遍历的结果特点:
前序遍历: 根节点+左节点前序遍历结果+后节点前序遍历结果
中序遍历:左节点中序遍历结果+根节点+右节点中序遍历结果
很容易看出,利用前序遍历可以直接知道根节点,利用中序遍历,可以分割树的左右节点集合。
同时,我们知道,无论哪种遍历方式,左节点或者右节点的子树中,节点个数是确定的。
由此我们可以得出如下结果:
1.利用前序遍历知道根节点,即第一个节点
2.利用已知的根节点,由中序遍历可以分割左右子树,同时得到左右子树的中序遍历结果
3.利用已知的左右子树节点个数,再利用前序遍历结果,可以分割出左右子树的前序遍历结果。
对于左右子树,我们已经推出其各自的前序遍历和中序遍历结果,递归即可完成之后的操作。
同时,我们知道,所有的递归都可以用栈的方式转换为非递归处理,所以最终的结果如下:
PS:这里使用字符表示节点名称,更多的是体现解法,效率并非最优。
测试结果:
Preoder:EDBACHFG
Inoder:ABCDEFGH
E(D(B(A,C),),H(F(,G),))