- 分布式下的全局ID需要具备如下特点
- 全局唯一: 区别于单机唯一,需要保证集群中的每台机器生成的ID都是不一样的,不能存在重复
- 趋势递增: 生成的全局ID需要能够近似有序递增
- 因为分布式ID是用来标识数据唯一性的,所以多数时候会被定义为主键或者唯一索引
- 对于 B+Tree这个数据结构来讲,数据以自增顺序来写入的话,b+tree的结构不会时常被打乱重塑,存取效率是最高的
- 信息安全:在趋势递增的基础上,不能被恶意用户推测出下一个ID
- 性能要求:需要考虑并发访问较大情况下带来的性能问题
- 应用场景
- 对数据分库分表后需要有唯一ID来标识一条数据
- 订单、优惠券等也都需要有唯一ID做标识
- URL短连接生成
MySQL自增主键
-
Flicker方案设计单独的库表,利用数据库的自增 ID 来生成全局 ID
-
使用“双主模式“解决单点故障问题
- 启用两台数据库服务器来生成 ID,通过区分 auto_increment 的起始值和步长来生成奇偶数的 ID
- 如果想配置主从复制来避免单点,主从切换时的不一致可能会导致重复发号
-
优点
- 简单,复用了数据库自增 ID 机制
-
缺点
- 并发量不大
- 强依赖DB,当DB异常时整个系统不可用,可用性低
- ID连续,安全性低
- 水平扩展困难
- 定义好了起始值、步长和机器台数之后,如果要添加机器就比较麻烦了
Redis的Incrby
- 因为 Redis 中的所有命令都是单线程的,可以利用 Incrby命令来模拟 ID 的递增
- 可以通过使用集群来提升吞吐量
- 我们可以为不同的 Redis 节点设置不同的初始值并统一步长,这样就能利用 Redis 生成唯一且趋势递增的 ID 了
- 如有 3 个 Redis 节点,分别设置初始值为 1、2、3 ,这时步长就应该定为 3
- 优点
- 不依赖数据库,且性能优于依赖数据库的 Flicker 方案
- 缺点
- Reids 宕机可能会生成重复的ID
- 水平扩展困难,原因同上
- ID连续,安全性低
UUID
- UUID是通用唯一识别码(Universally Unique Identifier)的缩写
- UUID是由128位二进制组成
- 一般转换成十六进制,然后用String表示
- 以连字号分为五段,形式为8-4-4-4-12的36个字符
- 示例:550e8400-e29b-41d4-a716-446655440000
- 生成的 ID 中没有带 Timestamp
- UUID 有多个版本,各版本算法不同
- 核心思想都是结合机器的网卡、系统时间、一个随机数来生成特定长度的字符串
- 核心思想都是结合机器的网卡、系统时间、一个随机数来生成特定长度的字符串
- 优点
- 本地生成,没有网络消耗,性能好
- 缺点
- 字符串占用的空间比较大
- 作为主键时,索引的效率非常低
- 无序,无法保证趋势递增
- 不利于做主键,每次插入都会对B+tree结构进行修改,严重影响性能
- 由于UUID包含MAC地址,不太安全
- 字符串占用的空间比较大
Snowflake
- 优点
- 趋势递增,且按照时间有序
- 性能高、稳定性高、不依赖数据库等第三方系统
- 可以按照自身业务特性灵活分配 bit 位
- 得益于 10位机器IDbit位
- 安全性好,ID不能被猜测
- 缺点
- 依赖于机器时钟,时钟回拨会造成暂不可用或重复发号
解决时钟回退问题
Leaf
- 在 Flicker 策略 与 Snowflake 算法的基础上提供了两套方案
- Flicker 方案每次都需要读取数据库,造成数据库压力大
- Leaf-segment
- 利用 proxy server 批量获取,用完之后再去数据库获取新的号段
- 双 buffer优化
- 不需要在DB取号段的时候阻塞请求线程
- 当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段
- 缺点:
- ID号是可计算的,不适用于订单ID生成场景
- 比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量
- Leaf-segment
UIDGenerator
- 基于Snowflake算法的唯一ID生成器
- 支持自定义workerId位数和初始化策略,从而适用于docker等虚拟化环境下实例自动重启、漂移等场景
- 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题
- 通过消费未来时间克服了雪花算法的并发限制
参考
- https://mp.weixin.qq.com/s/h8dphDS4D36nWyhPCLC7ag
- https://mp.weixin.qq.com/s/KfoLFClRwDXlcTDmhCEdaQ
- https://blog.rpcx.io/posts/distributed-id-generator/
- https://tech.meituan.com/2017/04/21/mt-leaf.html
- https://github.com/Meituan-Dianping/Leaf/blob/master/README_CN.md
- https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md