分布式ID

  • 分布式下的全局ID需要具备如下特点
    • 全局唯一: 区别于单机唯一,需要保证集群中的每台机器生成的ID都是不一样的,不能存在重复
    • 趋势递增: 生成的全局ID需要能够近似有序递增
      • 因为分布式ID是用来标识数据唯一性的,所以多数时候会被定义为主键或者唯一索引
      • 对于 B+Tree这个数据结构来讲,数据以自增顺序来写入的话,b+tree的结构不会时常被打乱重塑,存取效率是最高的
    • 信息安全:在趋势递增的基础上,不能被恶意用户推测出下一个ID
    • 性能要求:需要考虑并发访问较大情况下带来的性能问题
  • 应用场景
    • 对数据分库分表后需要有唯一ID来标识一条数据
    • 订单、优惠券等也都需要有唯一ID做标识
    • URL短连接生成

MySQL自增主键

  • Flicker方案设计单独的库表,利用数据库的自增 ID 来生成全局 ID
    在这里插入图片描述

  • 使用“双主模式“解决单点故障问题

    • 启用两台数据库服务器来生成 ID,通过区分 auto_increment 的起始值和步长来生成奇偶数的 ID
    • 如果想配置主从复制来避免单点,主从切换时的不一致可能会导致重复发号
      在这里插入图片描述
  • 优点

    • 简单,复用了数据库自增 ID 机制
  • 缺点

    • 并发量不大
    • 强依赖DB,当DB异常时整个系统不可用,可用性低
    • ID连续,安全性低
    • 水平扩展困难
      • 定义好了起始值、步长和机器台数之后,如果要添加机器就比较麻烦了

Redis的Incrby

  • 因为 Redis 中的所有命令都是单线程的,可以利用 Incrby命令来模拟 ID 的递增
  • 可以通过使用集群来提升吞吐量
    • 我们可以为不同的 Redis 节点设置不同的初始值并统一步长,这样就能利用 Redis 生成唯一且趋势递增的 ID 了
    • 如有 3 个 Redis 节点,分别设置初始值为 1、2、3 ,这时步长就应该定为 3
  • 优点
    • 不依赖数据库,且性能优于依赖数据库的 Flicker 方案
  • 缺点
    • Reids 宕机可能会生成重复的ID
    • 水平扩展困难,原因同上
    • ID连续,安全性低

UUID

  • UUID是通用唯一识别码(Universally Unique Identifier)的缩写
  • UUID是由128位二进制组成
    • 一般转换成十六进制,然后用String表示
    • 以连字号分为五段,形式为8-4-4-4-12的36个字符
      • 示例:550e8400-e29b-41d4-a716-446655440000
  • 生成的 ID 中没有带 Timestamp
  • UUID 有多个版本,各版本算法不同
    • 核心思想都是结合机器的网卡、系统时间、一个随机数来生成特定长度的字符串
      在这里插入图片描述
  • 优点
    • 本地生成,没有网络消耗,性能好
  • 缺点
    • 字符串占用的空间比较大
      • 作为主键时,索引的效率非常低
    • 无序,无法保证趋势递增
      • 不利于做主键,每次插入都会对B+tree结构进行修改,严重影响性能
    • 由于UUID包含MAC地址,不太安全

Snowflake

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 优点
    • 趋势递增,且按照时间有序
    • 性能高、稳定性高、不依赖数据库等第三方系统
    • 可以按照自身业务特性灵活分配 bit 位
      • 得益于 10位机器IDbit位
    • 安全性好,ID不能被猜测
  • 缺点
    • 依赖于机器时钟,时钟回拨会造成暂不可用或重复发号

解决时钟回退问题

在这里插入图片描述
在这里插入图片描述

Leaf

  • 在 Flicker 策略 与 Snowflake 算法的基础上提供了两套方案
  • Flicker 方案每次都需要读取数据库,造成数据库压力大
    • Leaf-segment
      • 利用 proxy server 批量获取,用完之后再去数据库获取新的号段
    • 双 buffer优化
      • 不需要在DB取号段的时候阻塞请求线程
      • 当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段
    • 缺点:
      • ID号是可计算的,不适用于订单ID生成场景
      • 比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量

UIDGenerator

  • 基于Snowflake算法的唯一ID生成器
  • 支持自定义workerId位数和初始化策略,从而适用于docker等虚拟化环境下实例自动重启、漂移等场景
  • 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题
  • 通过消费未来时间克服了雪花算法的并发限制

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值