Elasticsearch教程(9) Mapping 字段类型 keyword text date numeric

前言

  • 我们在用MySQL时,如果表结构定义不好,后期开发会不断踩坑。
  • 用ES也是如此,虽然ES有mapping动态映射,但是它自动生成的不一定是我们期望的。学好ES的mapping很重要。在学习ES查询和聚合之前,应该先打好mapping的基础,学习顺序不能变。这和学习SQL一样,先学习数据类型有int,char,varchar等,然后再学习group by,having等。

核心字段类型

  • ES支持的字段类型很多,但我们工作中常用的也就那些核心字段。
  • 一开始学习ES时,掌握好常用的类型,不必要精通每一种,如果工作中遇到了需要用到特殊类型再去研究。
  • 学习一门技术要先广度后深度,不能陷入”只见树木,不见森林“。

1 keyword

  • keyword是关键词类型,ES把keyword类型的值当作词根存在倒排索引中,不进行分词。
  • keyword适合存结构化数据,比如name,age,性别,手机号,status(数据状态),tags(标签),HttpCode(404,200,500)等。
  • 字段常用来精确查询,过滤,排序,聚合时,应设为keyword,而不是数值型。
  • 最长支持32766个UTF-8类型的字符,但放入倒排索引时,只截取前一段字符串,长度由ignore_above参数决定。

1.1 举例说明keyword

举例:数据状态字段
比如一个字段status,表示数据的审核状态(1:通过,2:待审核,3:未通过)。 如果设计mapping时,status设为数值型(short,integer, long),那在对status字段做term,terms查询时,可能没有你想象中的快,ES5.X后对数值类型不进行倒排索引了。
#如果一个字段经常用来放查询条件里过滤数据和聚合统计,
#最好设为keyword,而不是数值型
GET pigg/_search
{
  "query": {
    "term": {
      "status": 2
    }
  }
}

1.2 ignore_above是什么?

首先随意往ES插一条数据:

put my_index/_doc/1
{
  "name": "李星云"
}

查看ES自动生成的mapping,name是text类型,其下还有子类型keyword,且"ignore_above" : 256

GET /my_index/_mapping

name定义如下:
"properties" : {
  "name" : {
    "type" : "text",
    "fields" : {
      "keyword" : {
        "type" : "keyword",
        "ignore_above" : 256
      }
    }
  }
}

对于keyword类型, 可设置ignore_above限定字符长度。超过 ignore_above 的字符会被存储,但不会被倒排索引。比如ignore_above=4,”abc“,”abcd“,”abcde“都能存进ES,但是不能根据”abcde“检索到数据。

【1】创建一个keyword类型的字段,ignore_above=4

PUT test_index
{
  "mappings": {
    "_doc": {
      "properties": {
        "message": {
          "type": "keyword",
          "ignore_above": 4
        }
      }
    }
  }
}

【2】向索引插入3条数据:

PUT /test_index/_doc/1
{
  "message": "abc"
}

PUT /test_index/_doc/2
{
  "message": "abcd"
}

PUT /test_index/_doc/3
{
  "message": "abcde"
}

此时ES倒排索引是:

词项文档ID
abc1
abcd2

【3】根据message进行terms聚合:

GET /test_index/_search
{
  "size": 0, 
  "aggs": {
    "term_message": {
      "terms": {
        "field": "message",
        "size": 10
      }
    }
  }
}

返回结果:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 3,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test_index",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "message" : "abcd"
        }
      },
      {
        "_index" : "test_index",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "_source" : {
          "message" : "abc"
        }
      },
      {
        "_index" : "test_index",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 1.0,
        "_source" : {
          "message" : "abcde"
        }
      }
    ]
  },
  "aggregations" : {
    "term_message" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [#注意这分组里没有”abcde“
        {
          "key" : "abc",
          "doc_count" : 1
        },
        {
          "key" : "abcd",
          "doc_count" : 1
        }
      ]
    }
  }
}

【4】根据”abcde“进行term精确查询,结果为空

GET /test_index/_search
{
  "query": {
    "term": {
      "message": "abcde"
    }
  }
}

然后结果:
  "hits" : {
    "total" : 0,
    "max_score" : null,
    "hits" : [ ]
  }

通过上面结果能知道”abcde“已经存入ES,也可以搜索出来,但是不存在词项”abcde“,不能根据”abcde“作为词项进行检索。
对于已存在的keyword字段,其ignore_above子属性可以修改,但只对新数据有效。

2 text

  • text文本类型,如果要对字符串进行分词分析,可以设置为text。
  • ES自带了很多分词器,如果是中文,可以给ES安装ik中文分词插件。
  • 关于分词器属性的配置可以参考ES官网分析的章节。

2.1 举例说明text类型分词

在上面1.1.2节,新增了my_index索引,其中name是text类型。
分析在name上”I am a coder“这个短语是怎么被分词的。

GET /my_index/_analyze
{
  "field": "name",
  "text": "I am a coder"
}

结果如下图,这短语分成4个词项,其中大写”I“还转换为小写”i“。
在这里插入图片描述

字符串”I am a coder“,ES不会把这个完整的字符串保存起来,它保存的形式如下:

假设文档ID=1
i1
am1
a1
coder1

所以根据”I am a coder“这完整字符串是查询不到数据的。

3 Boolean类型

判断ES接受的值
true, “true”
false, “false”,""(空字符串)

具体代码案例参考Elasticsearch笔记(二十三) 详解mapping之boolean

4 日期类型

JSON没有date数据类型,所以ES里日期可有以下数据:

  • 日期格式的字符串,如"2015-01-01"或"2015/01/01 12:10:30"
  • 从开始纪元(1970-01-01 00:00:00 UTC)开始的毫秒数-长整型
  • 从开始纪元(1970-01-01 00:00:00 UTC)开始的秒数-整型

上面的UTC(Universal Time Coordinated) 叫做世界统一时间,中国大陆和 UTC 的时差是 + 8 ,也就是 UTC+8。在ES内部,时间以毫秒数的UTC存储。

date的格式可以被指定的,如果没有特殊指定,默认格式是"strict_date_optional_time||epoch_millis"
这段话可以理解为格式为strict_date_optional_time或者epoch_millis

4.1 什么是epoch_millis?

epoch_millis就是从开始纪元(1970-01-01 00:00:00 UTC)开始的毫秒数-长整型。

4.2 什么是strict_date_optional_time?

strict_date_optional_time是date_optional_time的严格级别,这个严格指的是年份、月份、天必须分别以4位、2位、2位表示,不足两位的话第一位需用0补齐。

常见的格式有如下:

  • yyyy
  • yyyyMM
  • yyyyMMdd
  • yyyyMMddHHmmss
  • yyyy-MM
  • yyyy-MM-dd
  • yyyy-MM-ddTHH:mm:ss
  • yyyy-MM-ddTHH:mm:ss.SSS
  • yyyy-MM-ddTHH:mm:ss.SSSZ

工作常见到是"yyyy-MM-dd HH:mm:ss",但是ES是不支持这格式的,需要在dd后面加个T,这个是固定格式。上面最后一个里大写的"Z"表示时区。
下面做测试:

#新增一个索引,设置birthday是date格式。
PUT /test_date_index
{
  "mappings": {
    "_doc":{
      "properties":{
        "birthday":{
          "type": "date"
        }
      }
    }
  }
}
#插入yyyy-MM-dd HH:mm:ss格式
PUT /test_date_index/_doc/3
{
  "birthday": "2020-03-01 16:29:41"
}

结果报错:
"caused_by": {
  "type": "illegal_argument_exception",
  "reason": "Invalid format: \"2020-03-01 16:29:41\" is malformed at \" 16:29:41\""
}
#插入 yyyy-MM-ddTHH:mm:ss格式,ES返回成功
PUT /test_date_index/_doc/4
{
  "birthday": "2020-03-01T16:29:41"
}

4.3 你就是想用yyyy-MM-dd HH:mm:ss?

date类型,还支持一个参数format,它让我们可以自己定制化日期格式。
比如format配置了“格式A||格式B||格式C”,插入一个值后,会从左往右匹配,直到有一个格式匹配上。

#先删除索引
DELETE test_date_index

#重建索引
PUT /test_date_index
{
  "mappings": {
    "_doc":{
      "properties":{
        "birthday":{
          "type": "date",
           "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        }
      }
    }
  }
}

#2020/03/01 17:44:09的毫秒级时间戳
PUT /test_date_index/_doc/1
{
  "birthday": 1583055849000
}

PUT /test_date_index/_doc/2
{
  "birthday": "2020-03-01 16:29:41"
}

PUT /test_date_index/_doc/3
{
  "birthday": "2020-02-29"
}
#上面3条语句都可以保存成功

5 数字:Numeric

为了提高性能和减少存储空间,选择一个满足存放你数据的类型就可以,没有必要选择过长的类型。比如各地人口数量,一般用integer存储足够了,没有必要使用long类型。

类型说明
byte8位,-128 ~ 127
short16位,-32768 ~ 32767
integer32位,-231 ~ 231-1
long64位,-263 ~ 263-1
float单精度、32位、符合IEEE 754标准的浮点数
double双精度、64位、符合IEEE 754标准的浮点数
half_float16位半精度IEEE 754浮点类型
scaled_float缩放类型的的浮点数

5.1 创建一个新的索引

PUT pigg_test_num
{
  "mappings": {
    "properties": {
      "num_of_byte": {
        "type": "byte"
      },
      "num_of_short": {
        "type": "short"
      },
      "num_of_integer": {
        "type": "integer"
      },
      "num_of_long": {
        "type": "long"
      },
      "num_of_float": {
        "type": "float"
      },
      "num_of_double": {
        "type": "double"
      }
    }
  }
}

5.2 插入正确的数据

PUT pigg_test_num/_doc/1
{
  "num_of_byte": 127,
  "num_of_short": 32767,
  "num_of_integer": 2147483647,
  "num_of_long": 9223372036854775807,
  "num_of_float": 0.33333,
  "num_of_double": 11111111111111.11111111111111111
}

查看文档的数据

GET pigg_test_num/_search

返回:
{
    "hits":[
        {
            "_index":"pigg_test_num",
            "_type":"_doc",
            "_id":"1",
            "_score":1,
            "_source":{
                "num_of_byte":127,
                "num_of_short":32767,
                "num_of_integer":2147483647,
                "num_of_long":9223372036854776000,
                "num_of_float":0.33333,
                "num_of_double":11111111111111.111
            }
        }
    ]
}

5.3 插入越界的数据

short的最大值是32767

PUT pigg_test_num/_doc/2
{
  "num_of_byte": 127,
  "num_of_short": 32768
}

返回报错
"reason" : "Numeric value (32768) out of range of Java short..."

5.4 给整数赋值浮点数

给long类型赋值浮点数, 虽然能够存储成功,但是已经丢失了精度,所以工作中不能这么用

PUT pigg_test_num/_doc/1
{
  "num_of_long": 9223372036854775807.0001
}
返回
 "_source" : {
    "num_of_long" : 9.223372036854776E18
}

5.5 给整数赋值浮点数的字符串

给long类型赋值浮点数, 虽然能够存储成功, 但是存的就是字符串,而不是数字.

PUT pigg_test_num/_doc/1
{
  "num_of_long": "9223372036854775807.0001"
}
返回
"_source" : {
    "num_of_long" : "9223372036854775807.0001"
}

下面验证存的是字符串而不是数字

#期望给long的值加上2
POST pigg_test_num/_update/1
{
  "script": {
    "source": "ctx._source.num_of_long += 2",
    "lang": "painless"
  }
}
# 返回值却是给字符串拼接加上字符"2"
"_source" : {
    "num_of_long" : "9223372036854775807.00012"
}

总结: 综合上面错误的实验, 可以知道工作中还是得传正确格式和范围的数字.

6 二进制类型:binary

ES能接受以Base64编码的二进制值,binary字段是不会被分析存储和检索的。因为它的值就是一巨长的乱码,对它分析毫无意义, 它只是被原模原样的存储。
工作中可能用binary存储图像,但情况也不多,用ES存图像不是很好的选择。

Base64编码简单说下,如下图:对单词"Man",它Base64编码是TWFu。
在这里插入图片描述

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑟 王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值