Flink
文章平均质量分 80
flink面试解析
走过冬季
大数据知识分享
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
07 | Flink的API可分为哪几层?
层级API 类型抽象程度灵活性开发效率典型用途底层低⭐⭐⭐⭐⭐低复杂事件处理、自定义逻辑中层中⭐⭐⭐⭐中主流实时计算、ETL高层高⭐⭐⭐⭐⭐⭐⭐实时数仓、分析查询Flink API 分为三层:底层 ProcessFunction 提供最大灵活性,中层 DataStream API 是主流开发选择,高层 Table API/SQL 实现流批统一的声明式分析——开发者可根据需求“按需取用,层层递进”。原创 2025-11-18 15:24:59 · 263 阅读 · 0 评论 -
06 | Flink的延迟数据如何处理
数据到达时机Flink 行为在窗口结束前到达正常参与计算,窗口触发时输出在窗口结束后、allowedLateness 内到达窗口状态保留,重新计算并输出更新结果超过 allowedLateness进入,主窗口不再处理⚠️ 注意:只有场景才涉及延迟数据处理;Processing Time 窗口无此概念。原创 2025-11-17 16:41:44 · 461 阅读 · 0 评论 -
05 | Flink中的状态后端(State Backend)是什么
状态后端是 Flink 管理状态存储与恢复的“引擎”,根据状态大小和性能需求选择 Memory、Fs 或 RocksDB 后端,是保障作业稳定性和扩展性的关键配置。原创 2025-11-17 16:31:59 · 312 阅读 · 0 评论 -
04 | 简单描述下Flink 的容错机制
Flink 通过周期性 Checkpoint 将计算状态和数据源位置快照到持久化存储,故障时从最近快照恢复,从而实现低延迟、高可靠的容错能力。原创 2025-11-17 16:09:46 · 231 阅读 · 0 评论 -
03 | Flink是如何实现Exactly-Once端到端一致性的
Kafka]↓ (消费 offset=100)├─ 处理数据 → 更新内部状态└─ 预提交:将结果写入 Sink 临时区(事务中)↓Checkpoint 成功?├─ 是 → 正式提交 Sink(commit 事务)└─ 否 → 回滚 Sink(abort 事务),从 offset=100 重放。原创 2025-11-17 16:02:05 · 563 阅读 · 0 评论 -
01 | 什么是 Flink 反压
反压是指在 Flink 数据流中,下游算子处理能力不足,导致其输入缓冲区(Input Buffer)被填满,进而阻塞上游算子继续发送数据的现象。问题答案什么是反压?下游处理慢 → 上游自动减速的流控机制是否正常?✅ 正常且必要,防止 OOM如何发现?Web UI 查看 Backpressure 状态根本原因?瓶颈算子(通常是 Sink 或窗口)如何解决?优化 Sink、解决倾斜、调并行度、扩容资源💡最佳实践不要试图“消除”反压,而是通过优化让反压消失。健康的 Flink 作业在负载变化时应能。原创 2025-11-13 09:53:18 · 672 阅读 · 0 评论 -
02 | 说下Flink Watermark机制
Watermark 是一种特殊的时间戳标记,表示“在此 Watermark 之前(≤ W)的事件已经全部到达”,即系统认为不会再有 ≤ W 的事件到来。Watermark 是单调递增的(不能倒退)表示 “事件时间 ≤ t 的数据已完整”对事件时间进度的估计概念说明事件时间事件真实发生的时间(来自数据本身)Watermark“≤ W 的事件已到齐”的进度标记作用触发事件时间窗口、处理乱序事件核心原则Watermark 单调递增,取多流最小值关键配置✅。原创 2025-11-13 10:56:55 · 350 阅读 · 0 评论
分享