winycg的博客

学习笔记

排序:
默认
按更新时间
按访问量

python稀疏矩阵的存储与表示

参考链接: https://blog.csdn.net/bitcarmanlee/article/details/52668477 python scipy中的sparse模块就是为存储和表示稀疏矩阵。 模块的导入以及查看模块的信息: from scipy import sparse ...

2018-07-09 10:59:40

阅读数:29

评论数:0

神经网络模型压缩知识点整理

FLOP

2018-07-06 21:40:11

阅读数:17

评论数:0

LaTeX常用代码解析

标题以及纸张边距设置 \documentclass{article} \title{tutorials} \author{winycg} \date{\today} \usepackage[a5paper, left=10mm, right=10mm, top=15mm, bottom=1...

2018-07-05 00:03:35

阅读数:12

评论数:0

win10 Tex Live + Texstudio安装

参考地址:https://blog.csdn.net/qq_38386316/article/details/80272396 安装TexLive 镜像下载地址:http://www.tug.org/texlive/ 下载on DVD 下载iso镜像文件: 双击下载后的i...

2018-07-02 22:25:16

阅读数:31

评论数:0

IEEE模板的latex使用

IEEE模板下载 下载IEEE的conference和transaction的latex模板文件: conference:https://www.ieee.org/conferences/publishing/templates.html transaction模板:https://ieee...

2018-07-02 22:06:24

阅读数:20

评论数:0

docker常用命令

通过Dockerfile构建镜像 docker build -t image-name docker-file-location -t:使用提供的image-name来标记构建的镜像 运行docker容器 docker run -d image-name

2018-06-15 00:32:15

阅读数:18

评论数:0

TensorFlow 利用Dataset读取和构建数据

参考链接: Dataset官方链接 TensorFlow全新的数据读取方式:Dataset API入门教程 知乎:十图详解tensorflow数据读取机制(附代码) TensorFlow数据读取方式: 利用placeholder读取内存数据 利用queue读取硬盘中的数据 Datase...

2018-06-05 22:07:36

阅读数:122

评论数:0

linux ldconfig命令,环境变量文件配置详解

ldconfig 参考:http://man.linuxde.net/ldconfig https://blog.csdn.net/chenzixun0/article/details/56278632 主要是在默认搜寻目录/lib和/usr/lib以及动态库配置文件/etc/ld.so.c...

2018-06-04 20:42:42

阅读数:42

评论数:0

Caffe安装(Ubuntu16.04 GPU版本)以及入门

参考链接: Caffe官网 Caffe入门小教程 Caffe的全称为Convolutional Architecture for Fast Feature Embedding。主要优势如下: (1)容易上手,网络结构都是以配置文件.prototxt形式定义,类似json格式,不需要用代码设...

2018-06-02 21:27:51

阅读数:74

评论数:0

Docker的安装和使用

参考链接:Docker中文教程 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源。 Docker 可以轻松的为任何应用创建一个轻量级的、可移植的、自给自足的容器。开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机)、bar...

2018-06-02 01:07:53

阅读数:131

评论数:0

Tensorflow实现AlexNet

测试前5层卷积层的前向计算与后向计算的时间: from datetime import datetime import math import time import tensorflow as tf batch_size = 32 num_batches = 100 def prin...

2018-06-01 16:28:42

阅读数:83

评论数:0

集成学习-多数投票分类器

集成方法(Ensemable method)的目标是:将不同的分类器组成一个元分类器,与但个分类器相比,元分类器具有更好的泛化性能。通常使用多数投票的原则,将大多数分类器预测的结果作为最终的类标,即y^=mode(C1(x),C2(x),⋯,Cm(x)),mode为众数y^=mode(C1(x),...

2018-05-23 16:53:05

阅读数:54

评论数:0

分类器的不同的性能评价指标

读取混淆矩阵(confusion matrix) 混淆矩阵是一个2×2的方阵,用于展示分类器预测的结果——真正(true positive),假负(false negative)、假正(false positive)及假负(false negative) sklearn中使用confusi...

2018-05-19 22:52:19

阅读数:46

评论数:0

网格搜索和随机搜索调优超参数&&嵌套交叉验证选择机器学习算法

网格搜索调优超参数 通过对不同超参数列表进行暴力穷举搜索,并计算评估每个组合对模型性能的影响,以获得参数的最优组合。 对SVM模型调优超参数: import matplotlib.pyplot as plt from sklearn.model_selection import Grid...

2018-05-17 23:41:35

阅读数:109

评论数:0

利用学习和验证曲线评估模型

偏差和方差 参考链接:https://www.zhihu.com/question/20448464 欠拟合=高偏差,过拟合=高方差

2018-05-16 19:56:22

阅读数:55

评论数:0

模型选择和交叉验证

模型选择 holdout方法 在典型的机器学习应用中,为进一步提高模型在预测未知数据的性能,还要对不同的参数设置进行调优和比较,该过程称为模型选择。指的是针对某一特定问题,调整参数以寻求最优超参数的过程。 假设要在10个不同次数的二项式模型之间进行选择: 1.hθ(x)=θ0+θ1x2...

2018-05-16 13:10:06

阅读数:125

评论数:0

正则化(Regularization)

参考:https://www.cnblogs.com/jianxinzhou/p/4083921.html 线性回归中的三种形式: 注:我们讨论的线性或者非线性针对的是自变量的系数,而非自变量本身,所以这样的话不管自变量如何变化,自变量的系数如果符合线性我们就说这是线性的。所以这里我们也就可以...

2018-05-14 18:06:54

阅读数:38

评论数:0

参数估计

点估计 设总体XXX的分布函数的形式已知,但它的一个或多个参数未知,借助于总体XXX的一个样本来估计总体未知参数的值得问题称为参数的点估计问题。 举例: 某炸药厂,一天中发生着火现象的次数XXX是一个随机变量,假设XXX服从λ>...

2018-05-12 19:37:52

阅读数:33

评论数:0

逻辑斯谛回归(logistic regression)

对于二分类问题,输出标记为y∈{0,1}y∈{0,1}y \in \{0, 1 \},0表示负向类,1表示正向类。需要通过一个函数将线性回归模型wTx+bwTx+bw^{T}x+b的输出值映射到[0,1][0,1][0,1]范围内,这个函数就是对数几率函数(logistic function),也...

2018-05-12 17:01:44

阅读数:65

评论数:0

linux常用命令整理

路径切换 cd /home/winycg/ # 转到该目录下 cd .. # 转到上一级目录 cd ../.. # 转到上两级目录 cd - # 输出上一次所在目录的绝对路径并定位到上次所在路径 cd ~user1 # 进入个人所在的主目录 pwd # 显示当前的绝对路径 文件...

2018-05-07 00:06:58

阅读数:55

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭