支持向量机
wip12315
这个作者很懒,什么都没留下…
展开
-
支持向量机(三)核函数
本文转自http://www.cnblogs.com/jerrylead 7 核函数(Kernels) 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点。那么首先需要将特征x扩展到三维,然后寻找特征和结果之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作,在这个例子中 我们希望将得到的特征映射后的转载 2011-05-15 21:48:00 · 647 阅读 · 0 评论 -
收集一下核函数-Kernel Function
本文转自http://www.shamoxia.com/html/y2010/2292.html Kernel Functions Below is a list of some kernel functions available from the existing literature. As was the case with previous articles, every LaTeX notation for the formulas below are readily available转载 2011-05-15 21:54:00 · 626 阅读 · 0 评论 -
支持向量机: Kernel
本文转自:http://blog.pluskid.org/?p=685&cpage=1#comment-4697 前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的。不过,由于是线性方法,所以对非线性的数据就没有办法处理了。例如图中的两类数据,分别分布为两个圆圈的形状,不论是任何高级的分类器,只要它是线性的,就没法处理,SVM 也不行。因为这样的数据 对于这个数据集,我可以悄悄透露一下:我生成它的时候就是用两个半径不同的圆圈加上了少量的噪音得到的,所以,一转载 2011-05-16 13:06:00 · 440 阅读 · 1 评论