- 博客(7)
- 收藏
- 关注
原创 Python基础知识汇总(2)
Python基础8.列表9.元组10.字典(dictionary)11.匿名函数lambda12.import语句13.文件操作14.File(文件)方法15.内置函数8.列表Python包含以下函数:Python包含以下方法:9.元组Python的元组(tuple)与列表类似,不同之处在于元组的元素不能修改。元组使用小括号,列表使用方括号。元组内置函数:Python元组包含了以下内置函数:10.字典(dictionary)字典是另一种可变容器模型,且可存储任意类型对象。字典的每个
2020-12-02 15:04:37 413
原创 Python基础知识汇总(1)
Python基础1.标识符2.标准数据类型3.数据类型转换4.运算符1)算术运算符2)比较运算符3)赋值运算符4)位运算符5)逻辑运算符(5)Python成员运算符5.循环语句6.数值类型7.字符串1.标识符在 Python 里,标识符有字母、数字、下划线组成。在 Python 中,所有标识符可以包括英文、数字以及下划线(_),但不能以数字开头。Python 中的标识符是区分大小写的。以下划线开头的标识符是有特殊意义的。以单下划线开头 _foo 的代表不能直接访问的类属性,需通过类提供的接口进行访
2020-12-02 14:49:16 472
原创 深度之眼--图像分割第五周GCN
经典分割网络GCN1.卷积的方式汇总2.定位和分类的权衡3.实现GCN网络1.卷积的方式汇总 1.大卷积核:拥有大的感受野,甚至可以扩大到全局卷积,缺点是参数量、计算量过大。 2. 小卷积核堆叠:通过3x3卷积核的堆叠来扩大感受野,减少参数量和计算量,同时可以添加多层非线性激活函数来提高模型判别能力。缺点是堆叠容易出现不可控因素。&nbs
2020-08-17 16:24:16 894 1
原创 深度之眼--图像分割第四周Deeplab
图像分割领风者Deeplab系列1.语义分割面临的问题2.Deeplab系列的思想3.简述ASPP模块4.模型发展:从Deeplab v1到v3+1.语义分割面临的问题 1.CNN可以可靠地预测图像中物体的存在和粗糙位置,但不太适合定位它们的精确轮廓。连续下采样会导致图像浅层特征损失,分类精度和定位精度与卷积网络之间存在着自然的权衡:层数越深/变换越复杂(提取抽象特征) ,分类精度越高 ,但会损失定位信息。
2020-08-09 15:04:26 1065 2
原创 深度之眼--图像分割第三周SegNet
编码解码器先锋SegNet1.语义分割的概念2.FCN论文中的figure23.FCN论文中的figure34.论文Results提到的前3个指标5.测试结果1.语义分割的概念 语义分割就是逐像素的图像中的内容进行分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的。语义分割的传统方法有:(1)非监督学习:阈值法,连通域法,图像形态学方法等。(2)监督学习: K 最近邻算法、支持向量机(SVM)等。
2020-08-02 13:33:57 454 1
原创 深度之眼--图像分割第二周Unet
医学图像分割常青树 Unet1.医学图像分割面临挑战2.医学图像分割特点3.Unet分割CamVid数据集4.Unet分割医学数据集1.医学图像分割面临挑战 医学图像分割是计算机视觉领域研究的一项重要内容,图像分割在影像学诊断中大有用处,自动分割能帮助医生确认病变组织的大小,辅助或代替医生诊断,对很多疾病的防治都具有广泛的应用价值。近年来,深度学习被广泛应用于不同模式的图像分割,CT、X射线、MRI等。通过自动地勾勒出图像
2020-07-25 22:47:43 824 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人