智能技术_8:回归方法(智能交通)

智能技术_1:安装TensorFlow和Keras
智能技术_2:大数据分析与机器学习概论
智能技术_3:关联规则
智能技术_4:贝叶斯分类和贝叶斯网络
智能技术_5:决策树
智能技术_6:K个最近邻居(医疗旅游)
智能技术_8:回归方法(智能交通)


# 写于2021.04.14
# 本文为学习笔记,用的ppt是陈志华教授版,侵删
# 笔记只为交流,入门小白,有错望留言纠正
# 总结不易 望赞鼓励

实验1

方法一:excel自带线性

在这里插入图片描述
在这里插入图片描述

方法二:Rstudio

先将数值正规化 然后另存一个文件。
(原资料 – 最小值) / (最大值 – 最小值)
在这里插入图片描述
统一化后的数据:https://download.csdn.net/download/wistonty11/16674042

=MAX(A2:A6128)
=MAX(B2:B6128)
=min(A2:A6128)
=min(B2:B6128)

=(A2-$F$3)/($F$2-$F$3)
=(B2-$G$3)/($G$2-$G$3)
  • 加$是为了固定,也就是加的这些值不变,没加的变化
  • 用复制来解决相同公式
  • 数值粘贴
#安装neuralnet函式库
install.packages('neuralnet')
#引用neuralnet函式库
library(neuralnet)

#读取训练数据
training_data <- read.csv(file.choose(), header = TRUE)

#设定随机数种子
set.seed(1)
#训练线性回归
model <- neuralnet(Density ~ speed, training_data, 
                   hidden=c(0), linear.output = TRUE)
#绘制线性回归
plot(model)

#读取测试数据
testing_data <- read.csv(file.choose(), header = TRUE)
testing_data_input <- subset(testing_data, select = -Density)

#将测试数据代入模型进行预测,并取得预测结果
pred <- compute(model, testing_data_input)
#运用呈现估计结果
print(pred$net.result)

开始 报错原因:识别excel 抬头大写总是乱码,于是将excel中Speed 换成小写speed;代码相应改了一下后就好了。
在这里插入图片描述

在这里插入图片描述
两种方法为什么会误差这么大??

原因是excel没有将数据进行归一化 归一化后 基本上一致。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊老羊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值