智能技术_1:安装TensorFlow和Keras
智能技术_2:大数据分析与机器学习概论
智能技术_3:关联规则
智能技术_4:贝叶斯分类和贝叶斯网络
智能技术_5:决策树
智能技术_6:K个最近邻居(医疗旅游)
智能技术_8:回归方法(智能交通)
# 写于2021.04.14
# 本文为学习笔记,用的ppt是陈志华教授版,侵删
# 笔记只为交流,入门小白,有错望留言纠正
# 总结不易 望赞鼓励
实验1
方法一:excel自带线性
方法二:Rstudio
先将数值正规化 然后另存一个文件。
(原资料 – 最小值) / (最大值 – 最小值)
统一化后的数据:https://download.csdn.net/download/wistonty11/16674042
=MAX(A2:A6128)
=MAX(B2:B6128)
=min(A2:A6128)
=min(B2:B6128)
=(A2-$F$3)/($F$2-$F$3)
=(B2-$G$3)/($G$2-$G$3)
- 加$是为了固定,也就是加的这些值不变,没加的变化
- 用复制来解决相同公式
- 数值粘贴
#安装neuralnet函式库
install.packages('neuralnet')
#引用neuralnet函式库
library(neuralnet)
#读取训练数据
training_data <- read.csv(file.choose(), header = TRUE)
#设定随机数种子
set.seed(1)
#训练线性回归
model <- neuralnet(Density ~ speed, training_data,
hidden=c(0), linear.output = TRUE)
#绘制线性回归
plot(model)
#读取测试数据
testing_data <- read.csv(file.choose(), header = TRUE)
testing_data_input <- subset(testing_data, select = -Density)
#将测试数据代入模型进行预测,并取得预测结果
pred <- compute(model, testing_data_input)
#运用呈现估计结果
print(pred$net.result)
开始 报错原因:识别excel 抬头大写总是乱码,于是将excel中Speed 换成小写speed;代码相应改了一下后就好了。
两种方法为什么会误差这么大??
原因是excel没有将数据进行归一化 归一化后 基本上一致。