自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 使用飞桨构建波士顿房价预测模型

使用飞桨构建波士顿房价预测模型(笔记)动态图模式飞桨支持两种深度学习建模编写方式,更方便调试的动态图模式和性能更好并便于部署的静态图模式。静态图模式(声明式编程范式,类比C++):先编译后执行的方式。用户需预先定义完整的网络结构,再对网络结构进行编译优化后,才能执行获得计算结果。动态图模式(命令式编程范式,类比Python):解析式的执行方式。用户无需预先定义完整的网络结构,每写一行网络代码,即可同时获得计算结果。dygraph:动态图的类库。import paddleimport pad

2020-08-12 23:43:15 114

原创 对构建波士顿房价预测任务的神经网络模型的学习

**对构建波士顿房价预测任务的神经网络模型的学习(笔记)**数据集划分将数据集划分成训练集和测试集,其中训练集用于确定模型的参数,测试集用于评判模型的效果。为什么要对数据集进行拆分,这与学生时代的授课和考试关系比较类似,如图所示。2. 数据归一化处理对每个特征进行归一化处理,使得每个特征的取值缩放到0~1之间。这样做有两个好处:一是模型训练更高效;二是特征前的权重大小可以代表该变量对预测结果的贡献度再者就是,在后续的确定损失函数更小的点的过程中,所有参数的移动步长可以统一(学习率可以设置

2020-08-11 22:30:13 398

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除