机器学习——线性SVM实现鸢尾花分类

一、理论知识

1. 什么是支持向量机(SVM)

线性支持向量机(Linear Support Vector Machine,简称线性SVM)是一种常见的机器学习算法,主要用于二分类和多分类问题。其目标是找到一个最优的超平面,将不同类别的样本分隔开,并最大化两个类别之间的间隔。

2. 什么是支持向量

在支持向量机(SVM)算法中,支持向量是指被划分为不同类别的样本中,离分类超平面最近的一些点。这些点对分类超平面的位置和方向起着关键的支持作用。

二、代码实现

1. 导入基本库

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值