内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解。http://v.163.com/special/opencourse/algorithms.html
1.算法主要是关于性能performance
其他的诸如正确性、可维护性、可扩展性、健壮性、安全性等等也很重要
2. 算法运行时间:
a. depend on the input和输入有关
b. depend on the size 和输入的数据规模有关
c. want the upper time 找到运行时间上界。一般情况下,我们需要找到这个程序对于最坏的输入数据的情况下,运行时间是多长。guarantee to user
3.几种分析运行时间的方法T(n)。
a Worst-case:(usually)
用T(n)来表示算法在输入规模为n时的最大运行时间。它的作用就是你可以用它来给别人做出承诺,即我的算法在最坏的情况下的运行时间也不会超过T(n)。
b Average-case:(sometimes)
用T(n)来表示算法在所有输入规模为n的序列的运行时间的一个期望值。当然它的前提是假设输入的统计概率分布,也就是说对于一个规模为n的输入数据,它所有的排列方式出现的概率是相等的。
c Best-case:(bogus)
算法的运行时间的最好情况
4 渐进分析
渐近分析——对于一个算法的运行时间,忽略那些依赖于机器的常量;忽略所有的低阶项,只分析最高阶项;关注于运行时间的增长,而不仅仅只是运行时间。
5 举了两个例子
具体排序的动态图,可以参考http://visualgo.net/sorting.html
5.1 插入排序 insertion sort
对于每一个A[i],考虑A[1...i-1]中它的合适的插入位置k,然后将A[k...i-1]依次后移一个位置,把A[i]插入到A[k]的位置即可。
复杂度分析。
Best-case: 2(n-1)
Worst-case : 此图转载,侵删。
5.2 归并排序 merge sort
把数据分成两半,再分成两半,直至每个部分都只有一个或两个数据,然后进行排序。
归并排序递归处理的两个表已经有序了。