轮廓系数确定kmeans的K值

本文介绍如何使用轮廓系数评估并优化KMeans聚类算法的K值选择。通过计算样本的簇内不相似度和簇间不相似度,定义轮廓系数来衡量聚类效果,轮廓系数接近1表明聚类合理,接近-1则提示样本应重新分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

轮廓系数确定kmeans的K值

方法:
1,计算样本i到同簇其他样本的平均距离ai。ai 越小,说明样本i越应该被聚类到该簇。将ai 称为样本i的簇内不相似度。
簇C中所有样本的a i 均值称为簇C的簇不相似度
2,计算样本i到其他某簇Cj 的所有样本的平均距离bij,称为样本i与簇Cj 的不相似度。定义为样本i的簇间不相似度:bi =min{bi1, bi2, …, bik}
bi越大,说明样本i越不属于其他簇。
3,根据样本i的簇内不相似度a i 和簇间不相似度b i ,定义样本i的轮廓系数:
在这里插入图片描述
4,判断:
si接近1,则说明样本i聚类合理;
si接近-1,则说明样本i更应该分类到另外的簇;
若si 近似为0,则说明样本i在两个簇的边界上。
所有样本的s i 的均值称为聚类结果的轮廓系数,是该聚类是否合理、有效的度量。

做出学习曲线:
https://blog.csdn.net/qq_15738501/article/details/79036255

https://blog.csdn.net/u012679583/article/details/80316619

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值