自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 常规-分组-深度分离-分组深度分离卷积-参数量-计算量-dilation-python实现

常规 ,分组,深度分离,分组深度分离卷积参数量和计算量以及python实现

2022-09-27 16:10:04 794 1

原创 使用信任集利用腐败矩阵提高网络对含噪标签的鲁棒性

腐败矩阵利用腐败矩阵可以提高模型对含噪标签的鲁棒性。具体应用如下:一个带标签数据集中,有一部分信任的数据集DDD,有部分是不信任的数据集D~\widetilde DD,我们的目的是如何用上面标签含噪的数据集训练一个对标签噪声具有鲁棒性的网络。第一步:估计腐败矩阵腐败矩阵:就是腐败概率的KxK矩阵,K是类别数。腐败概率就是原本标签是 i,却分类成 j 的概率Cij=p(y~=j∣y=i)C_{ij} = p(\widetilde{y} =j|y=i)Cij​=p(y​=j∣y=i)估计准备:(

2022-03-28 11:42:40 197

原创 统计学习方法---李航

统计学习方法笔记第一章:统计学习概论1.1 统计学习统计学习( statistical learning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。统计学习也称为统计机器学习(statistical machine learning). 机器学习称为统计学习更学术化。Herbert A.simon对“学习”的定义我觉得挺好的:如果一个系统能够通过执行某个过程改进它的性能,这就是学习。统计学习的对象是数据(data),它从数据出发,提取数据的特征,抽象出数据模型,

2022-03-17 21:20:50 5563

原创 python 由数据直接看出数据维度

生成数据       生成一个矩阵维度为(2,3)的矩阵:b=torch([ [0,1,2],              [3,4,5] ])那么我们从b这个数据来分析如得到维度为(2,3)分析维度     首先,最外侧有两个中括号,即torch([

2021-06-01 17:27:05 3427

原创 latex 插入图片

学习latex插入图片出现 no boundingbox 问题:建议插入的图片使用eps格式:\begin{figure}[h!] \centering \includegraphics[height=2 in, width=3 in]{19.eps} \caption{DANN结构,$M_s = M_t = M$} \label{fig:19 def} \end{figure}将.png或.jpg图片转换成.eps格式方法:打开图片所在的文件夹,搜索cmd,按回车,如图:打开cmd,

2020-12-11 20:55:29 485

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除