自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 Android开发之Kotlin基础(零散版2)

by lazy要求属性声明为val,即不可变变量,在java中相当于被final修饰,这意味着该变量一旦初始化后就不允许再被修改值了,基本类型是值不能被修改,对象类型是引用不能被修改。可是有的时候,我并不想声明一个类型可空的对象,而且我也没办法在对象一声明的时候就为它初始化,那么这时就需要用到。var 很容易理解,JavaScript 等其他语言也通过该关键字来声明变量,它对应的就是 Java 中的变量。在很多 Kotlin 的学习资料中,都会传递一个原则:优先使用 val 来声明变量。

2024-11-26 13:55:15 323

原创 Android开发之Kotlin基础(零散版)

Android开发中的kotlin中的语法及其使用

2024-11-18 19:45:36 306

原创 视频超分的评价指标

6种视频的评价指标

2024-11-10 22:30:41 1355

原创 tf相关问题

如:File "run_predict_image.py", line 147, in run_model_single_image。所以如果用到partial,要使用低版本的flax,使用from flax import nn而不是linen as nn。flax更新一点的版本抛弃了nn,要改为from flax import linen as nn。一切都跟版本有关,减低TensorFlow版本到1.x,如1.15。就是把flax的版本降低到0.2.0才好的。也是降低版本就能解决的,

2024-11-05 17:13:23 351

原创 剑指offer19.正则表达式匹配

(注意,p的第i个字符的下标是i-1,在之后从p中利用下标取字符的时候不要搞混了)

2024-05-23 15:44:06 1756 1

原创 剑指offer28.对称的二叉树

这样顺序中序遍历的结果是[3, 2, 4, 1, 4, 2, 3],逆序遍历的结果是[3, 2, 4, 1, 4, 2, 3],一对比,结果一样,于是判断对称。思路:对于每个节点,判断是否对称,就是比较左子树的右子树和右子树的左子树是否对称、左子树的左子树和右子树的右子树是否对称。(3)左子树和右子树都不是空的,比较数值,如果数值相等,继续递归,如果数值不相等,说明不对称,返回false。有一种方法是把二叉树顺序遍历一遍,再逆序遍历一遍,有什么方法能体现遍历是父节点、左子树、右子树的顺序呢?

2024-05-21 19:32:13 649

原创 剑指offer27.二叉树的镜像

时间复杂度分析:每个节点遍历一遍,时间复杂度为O(N);空间复杂度:最差树退化为链表,递归栈的深度为N,故最坏的空间复杂度为O(N)。输入:root = [5,7,9,8,3,2,4] 输出:[5,9,7,4,2,3,8]右子树=临时变量(临时变量保存的是交换过的左子树)对于结点i,临时变量保存一下交换过的左子树;终止条件:该节点i为空节点,没有左右子树。,请左右翻转这棵二叉树,并返回其根节点。题目内容:给定一棵二叉树的根节点。题解:可以递归的交换节点的两个子树。左子树=交换过的右子树;

2024-05-21 18:17:22 370

原创 剑指offer07.重建二叉树

将中序遍历中i后面的元素作为新的右子树的中序遍历数组,前序遍历[i+1, end]的元素作为 右子树的前序遍历,递归地建立右子树;将中序遍历中i前面的元素作为新的左子树的中序遍历数组,前序遍历从[1, i]的元素作为左子树的前序遍历数组,递归地建立左子树;前序遍历的第一个元素是根节点(node->val = 前序遍历的第一个元素),在终须遍历中找到其位置i;【2】在中序遍历中,根节点前面的元素都在左子树,根节点后面的元素都在右子树。【1】一个二叉树的前序遍历数组的第一个元素一定是二叉树的根节点;

2024-05-19 20:36:34 798 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除