工具简介
go-mysql-transfer是一款MySQL数据库实时增量同步工具。 能够监听MySQL二进制日志(Binlog)的变动,将变更内容形成指定格式的消息,实时发送到接收端。从而在数据库和接收端之间形成一个高性能、低延迟的增量数据同步更新管道。
特性
1. 简单,不依赖其它组件,一键部署
2. 集成多种接收端,如:Redis、MongoDB、Elasticsearch、RocketMQ、Kafka、RabbitMQ、HTTP API等,无需编写客户端,开箱即用
3. 内置丰富的数据解析、消息生成规则、模板语法
4. 支持Lua脚本扩展,可处理复杂逻辑
5. 集成Prometheus客户端,支持监控告警
6. 集成Web Admin监控页面
7. 支持高可用集群部署
8. 数据同步失败重试
9. 支持全量数据初始化
github地址:go-mysql-transfer
如果此工具对你有帮助,请在github中Star支持下
安装部署
下载安装包
您可以直接下载编译好的安装包: [点击下载](https://github.com/wj596/go-mysql-transfer/releases)
最新版本:v1.0.4 release
也可以自行编译:
1、依赖Golang 1.14 及以上版本
2、设置 ' GO111MODULE=on '
3、拉取源码 ' git clone https://github.com/wj596/go-mysql-transfer.git '
4、进入目录,执行 ' go build '编译
MySQL开启Binlog、主从复制
Linux操作系统在my.cnf文件,Windows操作系统在my.ini文件
按照下面配置开启binlog和replaction,如下所示:
log-bin=mysql-bin # 开启 binlog
binlog-format=ROW # 选择 ROW 模式
server_id=1 # 配置 MySQL replaction 需要定义,不要和 go-mysql-transfer 的 slave_id 重复
运行
1、修改app.yml
2、命令行运行
Windows直接运行 go-mysql-transfer.exe
Linux执行 nohup go-mysql-transfer &
基于源码构建docker镜像
1、拉取源码 ' git clone [https://github.com/wj596/go-mysql-transfer.git](https://github.com/wj596/go-mysql-transfer.git) '
2、修改配置文件 ' app.yml ' 中相关配置
3、构建镜像 ' docker image build -t go-mysql-transfer -f Dockerfile . '
4、运行 ' docker run -d --name go-mysql-transfer -p 8060:8060 go-mysql-transfer:latest '
基于二进制可执行文件构建docker镜像
1、下载编译好的安装包: [点击下载](https://github.com/wj596/go-mysql-transfer/releases)
2、解压,并修改配置文件 ' app.yml ' 中相关配置
3、构建镜像 ' docker image build -t go-mysql-transfer -f Dockerfile . '
4、运行 ' docker run -d --name go-mysql-transfer -p 8060:8060 go-mysql-transfer:latest '
Redis配置
支持Redis部署模式:单机、主从(哨兵)、集群(cluster)
具体配置如下所示:
# app.yml
redis_addrs: 127.0.0.1:6379 #地址,多个用逗号分隔
#redis_group_type: cluster # 集群类型 sentinel或者cluster
#redis_master_name: mymaster # Master节点名称,如果group_type为sentinel则此项不能为空,为cluster此项无效
#redis_pass: 123456 #redis密码
#redis_database: 0 #redis数据库 0-16,默认0。如果group_type为cluster此项无效
同步数据为string类型
有t_user表,如下:
配置数据同步规则,如下:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
value_encoder: json #值编码
redis_structure: string # 数据类型。 支持string、hash、list、set、sortedset类型(与redis的数据类型一致)
redis_key_prefix: USER_ #key的前缀
redis_key_column: USER_NAME #使用哪个列的值作为key,不填写默认使用主键
同步到Redis的数据,如下:
同步数据为list类型
有t_user表,如下:
配置数据同步规则,如下:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
value_formatter: '{{.ID}}|{{.USER_NAME}}' # 值格式化表达式,如:{{.ID}}|{{.USER_NAME}},{{.ID}}表示ID字段的值、{{.USER_NAME}}表示USER_NAME字段的值
redis_structure: list
redis_key_value: user_list #key的值(固定值);当redis_structure为hash、list、set、sortedset此值不能为空
同步到Redis的数据,如下:
同步数据为set类型
有t_user表,如下:
配置数据同步规则,如下:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
value_formatter: '{{.ID}}|{{.USER_NAME}}' # 值格式化表达式,如:{{.ID}}|{{.USER_NAME}},{{.ID}}表示ID字段的值、{{.USER_NAME}}表示USER_NAME字段的值
redis_structure: set
redis_key_value: user_set #key的值(固定值);当redis_structure为hash、list、set、sortedset此值不能为空
同步到Redis的数据,如下:
同步数据为order set类型
有t_user表,如下:
配置数据同步规则,如下:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
value_formatter: '{{.ID}}|{{.USER_NAME}}' # 值格式化表达式,如:{{.ID}}|{{.USER_NAME}},{{.ID}}表示ID字段的值、{{.USER_NAME}}表示USER_NAME字段的值
redis_structure: sortedset
redis_key_value: users #key的值(固定值);当redis_structure为hash、list、set、sortedset此值不能为空
redis_sorted_set_score_column: CREATE_TIME #sortedset的score,当数据类型为sortedset时,此项不能为空,此项的值应为数字类型
同步到Redis的数据,如下:
同步数据为hash类型
有t_user表,如下:
配置数据同步规则,如下:
rule:
-
schema: eseap #数据库名称
table: t_user #表名称
column_underscore_to_camel: true #列名称下划线转驼峰,默认为false
value_encoder: json #值编码,支持json、kv-commas、v-commas
redis_structure: hash
redis_key_value: user_cache #key的值(固定值);当redis_structure为hash、list、set、sortedset此值不能为空
redis_hash_field_prefix: user_name_ #hash的field前缀,仅redis_structure为hash时起作用
redis_hash_field_column: user_name #使用哪个列的值作为hash的field,仅redis_structure为hash时起作用,不填写默认使用主键
同步到Redis的数据,如下:
使用Lua脚本实现复杂数据转换逻辑
示例一,同时插入多条记录
有t_user表,如下:
定义Lua脚本,如下:
-- t_user_redis.lua
local json = require("json") -- 加载json模块
local ops = require("redisOps") --加载redis操作模块
local row = ops.rawRow() --数据库当前变更的一行数据,table类型,key为列名称
local action = ops.rawAction() --当前数据库事件,包括:insert、updare、delete
local id = row["ID"] --获取ID列的值
local userName = row["USER_NAME"] --获取USER_NAME列的值
local key = "user_"..id -- 定义key
if action == "delete" -- 删除事件
then
ops.DEL(key)
ops.SREM("user_set",userName)
else
local password = row["PASSWORD"] --获取USER_NAME列的值
local createTime = row["CREATE_TIME"] --获取CREATE_TIME列的值
local result = {} -- 定义一个table
result["id"] = id
result["userName"] = userName
result["password"] = password
result["createTime"] = createTime
result["source"] = "binlog" -- 数据来源
local val = json.encode(result) -- 将newTable转为json
ops.SET(key,val) -- 对应Redis的SET命令,第一个参数为key(支持string类型),第二个参数为value
if action == "update" -- 修改事件
then
local oldRow = ops.rawOldRow() --数据库变更之前的数据(修改之前的数据)
local oldUserName = oldRow["USER_NAME"] --获取USER_NAME列的值
ops.SREM("user_set",oldUserName) -- 删除旧值
end
ops.SADD("user_set",userName) -- 对应Redis的SADD命令,第一个参数为key(支持string类型),第二个参数为value
end
在数据同步规则中引入脚本,如下:
rule:
-
schema: eseap
table: t_user
lua_file_path: t_user_redis.lua #lua脚本文件
同步到Redis的数据,如下:
示例二,将talbe中的一行映射成一个HASH
有t_user表,如下:
定义Lua脚本,如下:
-- t_user_redis2.lua
local ops = require("redisOps") --加载redis操作模块
local row = ops.rawRow() --当前数据库的一行数据,table类型,key为列名称
local action = ops.rawAction() --当前数据库事件,包括:insert、updare、delete
if action == "insert" -- 只监听insert事件
then
local key = row["USER_NAME"] --获取USER_NAME列的值
local id = row["ID"] --获取ID列的值
local userName = row["USER_NAME"] --获取USER_NAME列的值
local password = row["PASSWORD"] --获取PASSWORD列的值
local createTime = row["CREATE_TIME"] --获取CREATE_TIME列的值
ops.HSET(key,"id",id) -- 对应Redis的HSET命令
ops.HSET(key,"userName",userName) -- 对应Redis的HSET命令
ops.HSET(key,"password",password) -- 对应Redis的HSET命令
ops.HSET(key,"createTime",createTime) -- 对应Redis的HSET命令
end
在数据同步规则中引入脚本,如下:
rule:
-
schema: eseap
table: t_user
lua_file_path: t_user_redis2.lua #lua脚本文件
同步到Redis的数据,如下: