AI学习笔记(一)背景学习

什么是AI、机器学习、深度学习、强化学习,他们之间是什么关联关系?

AI(Artificial_intelligence):即人工智能是指计算系统执行通常与人类智能相关的任务的能力,例如学习、推理、解决问题、感知和决策

机器学习(machine learning)是人工智能的一个分支。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法

深度学习(deep learning)是机器学习的分支,是一种以人工神经网络为架构,对资料进行特征学习的算法。

强化学习(Reinforcement learning)是机器学习的分支,是一种以马尔可夫决策为架构,强调如何基于环境和行动,以取得最大化的预期利益的算法。

即机器学习是实现AI的一种技术,而深度学习和强化学习为机器学习的二种关键算法,其关系如下图所示

图一: 术语间的关联关系

那么我们常说的AI模型又是指什么呢?

AI 模型:是一种程序,经过一组数据的训练,可识别某些模式或做出某些决策,而无需进一步的人工干预。

由工程师采集指定领域的数据集,通过深度学习算法使程序学习到基本的规则,产生基础模型。

通过强化学习进一步调高AI模型在该领域回答的准确性。其关系如下图所示

图二: AI模型产生过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值