二项式定理证明

2 篇文章 0 订阅

对于 C n m C_n^m Cnm 我们可以写成: C n m = ( n m ) C_n^m=\left(\begin{array}{c}n\\m\end{array}\right) Cnm=(nm) 当然由于第二种写法 LaTeX \LaTeX LATEX 太复杂,所以用第一种。

C_n^m=\left(\begin{array}{c}n\\m\end{array}\right)


先写一下公式 ( x + y ) n = ∑ i = 0 n C n i x i y n − i (x+y)^n=\sum\limits_{i=0}^nC_n^ix^iy^{n-i} (x+y)n=i=0nCnixiyni

证明:

方法一(数学归纳法):

数学归纳法介绍:

如果一个结论对于 0 0 0 成立。
并且对于任意正整数 n n n,只要小于 n n n 的数成立,就可以推出 n n n 成立。
则结论对于所有自然数都成立。

假设 ( x + y ) n − 1 = ∑ i = 0 n − 1 C n − 1 i x i y n − 1 − i (x+y)^{n-1}=\sum\limits_{i=0}^{n-1}C_{n-1}^ix^iy^{n-1-i} (x+y)n1=i=0n1Cn1ixiyn1i

我们再乘上 ( x + y ) (x+y) (x+y) 变为 ( x + y ) ( x + y ) n − 1 = ( x + y ) ∑ i = 0 n − 1 C n − 1 i x i y n − 1 − i (x+y)(x+y)^{n-1}=(x+y)\sum\limits_{i=0}^{n-1}C_{n-1}^ix^iy^{n-1-i} (x+y)(x+y)n1=(x+y)i=0n1Cn1ixiyn1i

( x + y ) n = ( x + y ) ∑ i = 0 n − 1 C n − 1 i x i y n − 1 − i = ∑ i = 0 n − 1 C n − 1 i x i + 1 y n − 1 − i + ∑ i = 0 n − 1 C n − 1 i x i y n − i = ∑ i = 1 n C n − 1 i − 1 x i y n − i + ∑ i = 0 n − 1 C n − 1 i x i y n − i \begin{aligned}(x+y)^n&=(x+y)\sum\limits_{i=0}^{n-1}C_{n-1}^ix^iy^{n-1-i}\\&=\sum\limits_{i=0}^{n-1}C_{n-1}^ix^{i+1}y^{n-1-i}+\sum\limits_{i=0}^{n-1}C_{n-1}^ix^iy^{n-i}\\&=\sum\limits_{i=1}^{n}C_{n-1}^{i-1}x^iy^{n-i}+\sum\limits_{i=0}^{n-1}C_{n-1}^ix^iy^{n-i}\end{aligned} (x+y)n=(x+y)i=0n1Cn1ixiyn1i=i=0n1Cn1ixi+1yn1i+i=0n1Cn1ixiyni=i=1nCn1i1xiyni+i=0n1Cn1ixiyni

我们知道 C n m = C n − 1 m − 1 + C n − 1 m C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m} Cnm=Cn1m1+Cn1m

证明:

可以利用大佬写的证明,当然想看原文得充钱😭😭😭

C a b C_a^b Cab 的含义可以理解为从 AcWing 网站中的 a a a 为巨佬中选出 b b b 为巨佬的方案总数。
可以分为两类:

  1. 抽风巨佬
    那么此时已经选出了一位抽风巨佬,剩下只要从 a − 1 a-1 a1 位巨佬中选出 b − 1 b-1 b1 位巨佬。
  2. 不选抽风巨佬
    那么此时情况显然就是从剩下 a − 1 a-1 a1 位巨佬中选出 b b b 位巨佬。

根据加法计数原理有:
C a b = C a − 1 b − 1 + C a − 1 b C_a^b=C_{a-1}^{b-1}+C_{a-1}^b Cab=Ca1b1+Ca1b

接着再来到原问题,我们可以将原问题用这个公式合并,当然对于 i = 0 i=0 i=0 i = n i=n i=n 时没有一对的,要自己为一组,合并之后可为:

( x + y ) n = ∑ i = 0 n C n i x i y n − i (x+y)^n=\sum\limits_{i=0}^nC_n^ix^iy^{n-i} (x+y)n=i=0nCnixiyni

方法一(组合数学):

我们可以把原问题变成:

( x + y ) ( x + y ) . . . ( x + y ) ( x + y ) n 个 ( x + y ) \begin{array}{c}(x+y)(x+y)...(x+y)(x+y)\\n 个 (x+y)\end{array} (x+y)(x+y)...(x+y)(x+y)n(x+y)

那么我们就可以想,我们要从这每个 ( x + y ) (x+y) (x+y) 中要选多少个 x x x 剩下的全都要选 y y y 所以:

( x + y ) n = ∑ i = 0 n C n i x i y n − i (x+y)^n=\sum\limits_{i=0}^nC_n^ix^iy^{n-i} (x+y)n=i=0nCnixiyni

  • 39
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值