环形石子合并问题

环形石子合并问题是在普通的相邻石子合并问题的基础上稍加拓展,石子变成了环形的,也就是说每个石子都可能和其左右两边的石子合并。

那么它的dp解法也是基于普通的相邻石子合并问题,不了解的同学可以参考我写过的这篇文章

有两种解法,但他们基本的算法思想是一样的。


第一种是和上面链接文章的写法类似,不同的是对于需要绕圈的点,普通的相邻石子合并问题是直接跳过(因为它无法到达),而对于环形的,有两种实现方法。

其一:使用一个取模运算,实现环形dp。其二:将环形拓展成2倍链状,开二倍的数组即可实现,这个比较好理解好实现。

#include <iostream>
using namespace std;

int n, num[105], sum[105] = {};
int dp[105][105], ans = 0x3f3f3f3f;;

int main()
{
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> num[i];
        num[i + n] = num[i];
        dp[i][i] = 0;
    }
    for (int i = 1; i <= n + n; ++i) {
        sum[i] = sum[i - 1] + num[i];
    }
    for (int k = 2; k <= n; ++k) {
        for (int i = 1; i <= 2*n - k + 1; ++i) {
            int j = i + k - 1;
            dp[i][j] = 0x3f3f3f3f;
            for (int t = i; t < j; ++t) {
                dp[i][j] = min(dp[i][j], dp[i][t] + dp[t + 1][j] + sum[j] - sum[i - 1]);
            }
        }
    }
    for (int i = 1; i <= n; ++i) {
        ans = min(ans, dp[i][i + n - 1]);
    }
    cout << ans;
}
/*
3
1 2 3

6
3 5 7 3 4 2

4
3 5 2 3

9
1264 324 2344 23242 435 342 3243 6787 244 // 76328
*/

第二种解法和上面不同的是dp[n][m]数组。它的含义是:从石头n开始的长度m的区间的dp结果。而上面的dp[n][m]数组的含义是:从石头n到石头m这个闭区间的dp结果。

开这样一个数组效果和第一种是一样的,但对于我来说在思维上算是一种扩展。

#include <iostream>
using namespace std;

int sum[100] = {0}, ans = 0x3f3f3f3f;
int n, num[100], dp[100][100];

int getsum(int u, int s)
{
    s--;
    if (u + s > n) return sum[n] - sum[u - 1] + sum[(u + s)%n];
    else return sum[u + s] - sum[u - 1];
}

int main()
{
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        cin >> num[i];
        sum[i] = sum[i - 1] + num[i];
        dp[i][1] = 0;
    }
    for (int k = 2; k <= n; ++k) {
        for (int i = 1; i <= n; ++i) {
            dp[i][k] = 0x3f3f3f3f;
            for (int t = 1; t < k; ++t) {
                dp[i][k] = min(dp[i][k], dp[i][t] + dp[(i + t - 1) % n + 1][k - t] + getsum(i, k));
            }
        }
    }
    for (int i = 1; i <= n; ++i) {
        ans = min(ans, dp[i][n]);
    }
    cout << ans;
}
/*
3
1 2 3

6
3 5 7 3 4 2

4
3 5 2 3

9
1264 324 2344 23242 435 342 3243 6787 244 // 76328
*/
  • 10
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
环形石子合并问题可以使用动态规划来解决。下面是解决该问题的动态规划思路: 1. 定义状态:设dp[i][j]表示合并第i堆到第j堆石子所能得到的最小得分和最大得分。 2. 状态转移方程:对于dp[i][j],可以考虑最后一次合并的位置k,其中i <= k < j。假设最后一次合并的位置是k,则有以下两种情况: - 合并第i堆到第k堆和合并第k+1堆到第j堆,得到的得分为dp[i][k] + dp[k+1][j] + sum[i][j],其中sum[i][j]表示第i堆到第j堆石子的总数。 - 合并第i堆到第j堆,得到的得分为dp[i][j-1] + sum[i][j]。 综上所述,状态转移方程为: dp[i][j] = min(dp[i][k] + dp[k+1][j] + sum[i][j]),其中i <= k < j dp[i][j] = max(dp[i][j-1] + sum[i][j]) 3. 边界条件:当i == j时,只有一堆石子,得分为0。 4. 计算顺序:根据状态转移方程,可以先计算小区间的dp值,再逐步扩大区间,最终计算出dp[n]的值。 下面是一个使用动态规划解决环形石子合并问题的示例代码: ```python def mergeStones(stones): n = len(stones) dp = [[0] * (n+1) for _ in range(n+1)] sum = [0] * (n+1) for i in range(1, n+1): sum[i] = sum[i-1] + stones[i-1] for length in range(2, n+1): for i in range(1, n-length+2): j = i + length - 1 dp[i][j] = float('inf') for k in range(i, j): dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]) return dp[1][n] stones = [4, 1, 2, 3] min_score = mergeStones(stones) max_score = mergeStones(stones) print("最小得分:", min_score) print("最大得分:", max_score) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值