Springboot+deepseek 实现向量数据库优化检索

在Spring Boot中实现RAG(Retrieval-Augmented Generation)的增强,可以从检索优化、生成优化和系统架构三个维度进行改进。以下为具体实现方案及示例:

一、检索增强


1. 多模态混合检索
场景:结合文本、图像等多模态数据提升召回率
实现:

// 1. 文本向量检索(Milvus)
List<Float> textVector = openAIService.vectorize(queryText);
SearchParam textSearchParam = buildTextSearchParam(textVector);

// 2. 图像特征检索(CLIP模型)
float[] imageVector = clipService.vectorize(uploadedImage);
SearchParam imageSearchParam = buildImageSearchParam(imageVector);

// 3. 结果融合(加权平均)
List<Document> textResults = milvusClient.search(textSearchParam);
List<Document> imageResults = milvusClient.search(imageSea

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奔向理想的星辰大海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值